Flüssigerdgas

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Flüssigerdgastank in Massachusetts

Flüssigerdgas (Abkürzung LNG für englisch liquefied natural gas oder GNL für französisch gaz naturel liquéfié) ist die Bezeichnung für verflüssigtes aufbereitetes Erdgas, das auf −161 bis −164 °C (112 bis 109 K) abgekühlt wird. LNG weist nur etwa ein Sechshundertstel des Volumens von gasförmigem Erdgas auf.

Flüssigerdgas ist zu unterscheiden von Flüssiggas (liquefied petroleum gas, LPG oder natural gas liquids, NGL) sowie flüssigem Biomethan (liquefied biomethane, LBM).

Besonders zu Transport- und Lagerungszwecken hat LNG/GNL große Vorteile. Ein wirtschaftlicher Transport von gasförmigem Erdgas ist nur in Rohrleitungen möglich. Flüssiggut kann hingegen in besonderen Transportbehältern (z. B. Dewargefäßen) auf der Straße, der Schiene und auf dem Wasser transportiert werden. Bislang spielte diese Art der Beförderung nur eine untergeordnete Rolle, da insbesondere der Energiebedarf für die aufwändige Verflüssigung bei etwa 10 bis 25 Prozent des Energieinhaltes des Gases liegt. Die Transportwirtschaftlichkeitsgrenze von verflüssigtem Erdgas liegt bei etwa 2500 Kilometern, darunter ist der Transport per Erdgas-Pipeline als verdichtetes Erdgas (CNG, Compressed Natural Gas) energetisch wirtschaftlicher.

Herstellung, Transport und Lagerung[Bearbeiten | Quelltext bearbeiten]

Gastanker LNG Rivers mit Kugeltanks

Das Erdgas wird gewöhnlich in Rohrleitungen von einer Erdgas-Förderstätte zu einer Gasverflüssigungsanlage oder einem LNG-Terminal in einem Hafen transportiert, wo es gespeichert, aufbereitet und durch Herunterkühlen verflüssigt wird. Erdgas enthält in der Regel eine Mischung aus Methan und schwereren Kohlenwasserstoffen sowie Stickstoff, Kohlendioxid, Wasser und weitere unerwünschte Bestandteile wie Schwefelverbindungen. Vor der Verflüssigung werden diese Komponenten teilweise entfernt, um zum Beispiel eine Verfestigung während der Verflüssigung zu vermeiden oder um Kundenanforderungen zu erfüllen. Dazu werden Verfahren wie Adsorption, Absorption und kryogene Rektifikation angewandt. Nach diesen Verfahrensschritten enthält das behandelte Erdgas nahezu reines Methan, mit einem Methangehalt von ca. 98 %.[1] Danach wird das so bearbeitete gasförmige Erdgas zu LNG verflüssigt. Dazu wird das Erdgas in mehreren Schritten (mit jeweils aufeinander folgender Kompression, Abkühlung unter konstantem Druck, adiabatischer Entspannung) bis auf eine Temperatur von −162 °C heruntergekühlt.[2] Anschließend wird das LNG auf Spezialschiffe gepumpt, die zu einem anderen LNG-Terminal fahren und das LNG dort wieder mit den schiffseigenen Ladungspumpen an Land fördern. Die im Verlauf der letzten Jahre immer größer gebauten Schiffe mit gut isolierten Kugel- oder zunehmend mit Membrantanks werden gemäß Sicherheitskategorie auch als 2G-Tanker bezeichnet.

LNG-Gesamtsystem bestehend aus der Gasförderung, Verflüssigung, Be- und Entladung der LNG-Tanker, Vergasung, Zwischenlagerung und Transport zum Verbraucher

In LNG-Terminals wird das Flüssigerdgas im tiefkalten Zustand in isolierten Lagertanks (meist zylindrische Flachbodentanks) und unter atmosphärischem Druck bis zum weiteren Transport oder bis zur Regasifizierung zwischengespeichert.[3]

Das LNG wird danach durch Umladen auf kleinere Tanker oder nach einer Umwandlung in den gasförmigen Zustand in Rohrleitungen zu einem weiteren Verteiler (Hub) oder direkt zu Ferngas-Gesellschaften weitertransportiert.

Besondere Bedeutung hat diese Art des Transportes von Erdgas wegen der langen Transportwege für Länder im Fernen Osten, etwa Japan. Die Kosten für Offshore-Pipelines von den Förderstätten für Erdgas bis in diese Länder wären zu hoch. Zusammen mit Südkorea und Taiwan gehen fast 80 % der globalen LNG-Exporte in diese asiatischen Wirtschaftsmächte, wobei Japan knapp die Hälfte davon bezieht. Auch Großbritannien, Italien und Belgien importieren LNG.

Wirtschaftliche Bedeutung[Bearbeiten | Quelltext bearbeiten]

Wirtschaftliche Bedeutung von LNG

Der weltweite Absatz von verflüssigtem Erdgas erreichte 2019 sein bisheriges Maximum mit 315 Mio. Tonnen, die Produktionskapazität lag 2015 um 308 Mio. Tonnen.[4] Katar ist der weltweit größte Exporteur von Flüssigerdgas. Die Gasindustrie von Katar besitzt eine Produktionskapazität von 77 Mio. Tonnen LNG im Jahr und liefert ein Viertel des weltweiten LNG-Verbrauchs, mehr als Indonesien, Algerien und Russland (Stand bis 2011). Der LNG-Produzent Qatargas arbeitet mit ExxonMobil, Total, Mitsui, Marubeni, Conoco, Philips und Shell zusammen, der Produzent RasGas (nach der Industriestadt Ras Laffan im Norden der Halbinsel von Katar) mit ExxonMobil, Korea RasGas LNG, Petronet LNG und Itochu.[5]

Ende 2015 bestand ein großes Überangebot an verflüssigtem Erdgas. Katar hatte ein Drittel seiner Produktionskapazität nicht verkaufen können und zwischen 25 und 35 Mio. Tonnen aus US-Produktion waren noch nicht an Endabnehmer verkauft. Drei chinesische und ein indischer Importeur versuchten, LNG weiterzuverkaufen, zu dessen Abnahme sie sich verpflichtet hatten. Experten schätzten, dass die Produktionskapazität den Bedarf um jährlich 70 Mio. Tonnen übersteigt, auch in den nächsten Jahren.[6][7] Der Bau weiterer Verflüssigungsanlagen werde die überschüssige Produktionskapazität bis 2020 sogar auf 150 Mio. Tonnen pro Jahr ansteigen lassen.[8]

Die größten LNG-Exporteure waren 2019 Katar und Australien mit jeweils über 100 Milliarden . Alle anderen Exporteure lagen bei unter 50 Milliarden m³. Der größte Importeur von LNG ist Japan mit über 100 Milliarden m³. Europa hat 2019 insgesamt 119,8 Milliarden m³ LNG importiert.[9]

Deutschland[Bearbeiten | Quelltext bearbeiten]

In Deutschland gibt es bisher kein Anlandeterminal für LNG. Mehrere mögliche Standorte sind jedoch in Vorbereitung und eine LNG-Infrastrukturverordnung wurde vom Gesetzgeber verabschiedet. Deutsche Gasversorgungsunternehmen haben allerdings Beteiligungen an LNG-Terminals im Ausland erworben. LNG kann über benachbarte Staaten – Belgien, Niederlande, oder andere europäische Staaten – auf den deutschen Markt gebracht werden.[10]

Am 27. Februar 2022 kündigte Bundeskanzler Olaf Scholz aus Anlass des russischen Überfalls auf die Ukraine im Rahmen einer Sondersitzung des Deutschen Bundestages an, dass in Deutschland kurzfristig zwei Flüssigerdgasterminals errichtet werden sollen. Damit soll die einseitige Abhängigkeit von Russland beendet werden[11].

Ein Terminal soll als LNG-Terminal Wilhelmshaven in Wilhelmshaven und das andere soll als German LNG Terminal in Brunsbüttel entstehen. Uniper prüft vor diesem Hintergrund die Möglichkeit, die Planungen für das LNG-Terminal Wilhelmshaven wieder aufzunehmen. Vor dem Beschluss, das Projekt nicht zu realisieren, wurden viele Vorarbeiten für ein schwimmendes Terminal durchgeführt und ein Gutachten zur Energiedrehscheibe „WHV 2.0“ wurde erstellt.[12] Wilhelmshavens Oberbürgermeister Carsten Feist teilte mit, dass die Stadt sofort in das Projektmanagement einsteigen will.

Außerdem sind noch Stade (Projektgesellschaft: Hanseatic Energy Hub)[13] und Rostock im Gespräch[14].

Finnland[Bearbeiten | Quelltext bearbeiten]

Die finnische Regierung hat mit Genehmigung der Europäischen Union Investitionshilfen für den Bau einer Reihe von LNG-Terminals an der finnischen Küste bewilligt. Ziel ist es, den Wettbewerb auf dem finnischen Gasmarkt, der noch ganz von Einfuhren aus Russland abhängt, zu beleben. Außerdem soll die Einfuhr von LNG Erdgas auch in Regionen bringen, die bisher außer Reichweite des Pipeline-Netzes sind, das sich auf den äußersten Süden des Landes beschränkt.[15] Der erste Terminal mit einer Kapazität von 30.000 m3 wurde im Jahr 2016 am Hafen von Pori eröffnet.[16] Der im Bau befindliche Terminal in Tornio mit einer Kapazität von 50.000 m3 soll im Jahr 2018 festgestellt werden.[17] Der Baubeginn eines dritten Terminals in Hamina mit einer Kapazität von 30.000 m3 ist noch für 2017 vorgesehen.[18]

Polen[Bearbeiten | Quelltext bearbeiten]

Das Ende 2015 eröffnete Flüssiggasterminal Świnoujście befindet sich weniger als 10 Kilometer von der deutschen Grenze entfernt.

Nutzung als Kraftstoff[Bearbeiten | Quelltext bearbeiten]

Schiffsverkehr[Bearbeiten | Quelltext bearbeiten]

Die Ostfriesland der AG Ems, das erste LNG-Schiff unter deutscher Flagge, hat am 17. Juni 2015 in Borkum im Rahmen der Gästefahrt angelegt

Besonders in der Schifffahrt nimmt die Bedeutung der Nutzung von LNG als Kraftstoff zum Antrieb von Verbrennungsmotoren zu.[19][20] Gerade bei Flüssiggastankern, die LNG transportieren, bietet sich dieses an.[21] Inzwischen wird ein Vorteil aber auch bei der Nutzung bei anderen Schiffstypen gesehen.[22][23] Hierfür sind jedoch Bunkerstationen in den Häfen erforderlich, in denen LNG zur Verfügung steht.[24] Im Jahr 2015 gab es zwei Containerschiffe, deren Maschinen ausschließlich mit LNG betrieben wurden.[25] Im Juni 2015 wurde mit der auf LNG-Antrieb umgerüsteten Ostfriesland auch ein kommerziell genutztes Fährschiff in Dienst gestellt.[26] Im Dezember 2015 absolvierte die Helgoland als erstes in Deutschland gebautes Fahrgastschiff mit LNG-Antrieb ihre Jungfernfahrt. Seit Mai 2016 wird die AIDAprima während ihrer Liegezeit in den Häfen von Le Havre, Hamburg, Southampton und Zeebrügge mit Flüssigerdgas versorgt.[27] Die im Dezember 2018 in Dienst gestellte AIDAnova ist das erste Kreuzfahrtschiff, das mit Flüssiggas betrieben werden kann.[28] Nach ihrer Fertigstellung voraussichtlich im Jahr 2019 werden auch die Containerschiffe des CMA CGM 22.000-TEU-Typs mit LNG angetrieben[29], womit der Kraftstoff angesichts der 2020 bevorstehenden Schwefelgrenzwerte in Schiffstreibstoffen Einzug in den Bereich der größten Containerschiffe der Welt erhält. Im Juni 2019 gab es laut SEA-LNG-Report insgesamt 163 Schiffe mit LNG-Antrieb, 155 waren in Auftrag gegeben. Im Februar 2020 waren 175 Schiffe mit LNG-Antriebsmöglichkeit in Fahrt und 203 bestellt. Zum Vergleich: zum gleichen Zeitpunkt gab es 192 Schiffe mit Elektroantrieb (Batterie und Hybrid), weitere 196 in Bau oder geplant.[30]

Schwerlastverkehr auf der Straße[Bearbeiten | Quelltext bearbeiten]

LNG-Tankstelle in Mannheim

Auch im Schwerlastverkehr spielt LNG eine zunehmend wichtigere Rolle. Der europäische Vorreiter in diesem Segment ist Iveco, der bis Ende des Jahres 2018 bereits 1800 derartige Lkw auf europäischen Straßen im Einsatz haben will, Ende 2017 waren es rund 800. Aktuell planen auch Scania und Volvo in den neuen Markt einzusteigen, und haben ihrerseits bereits LNG-Motoren präsentiert.[31] Eines der größten Probleme, das LNG als Lkw-Kraftstoff allerdings begegnet, ist die fehlende flächendeckende Infrastruktur für die Betankung, so gab es in Deutschland 2016 lediglich zwei LNG-Tankstellen. Die EU und die EFTA-Staaten kamen gemeinsam insgesamt auf 101 solcher Tankstellen.[32] Eine weitere, die Ende 2017 in Österreich eröffnet hat, stand im Mai 2018 vor der Schließung, weil die staatliche Unterstützung fehle. Das zeigt einmal mehr, dass auch die politischen Grundvoraussetzungen für ein reibungsloses Wachstum von LNG als Treibstoff für Lastkraftwagen in einigen Staaten noch nicht geschaffen wurden. Im Beispiel Österreich handelt es sich bei den Problemen konkret einerseits um die Belastung des Kraftstoffes mit der Mineralölsteuer, anstatt der deutlich günstigeren Anwendung der Energieabgabe, wie das etwa bei Biomethan und komprimiertem Erdgas (CNG), das zur Betankung von Erdgas-Pkw verwendet wird, der Fall ist. Zudem fehlen Subventionen, die die – aufgrund zurzeit niedrigerer Stückzahlen – höheren Anschaffungskosten eines mit LNG betriebenen Lkw in gewissem Maße ausgleichen könnten. Dadurch ist dieses Geschäft in einem Land wie Österreich zum aktuellen Zeitpunkt unwirtschaftlich – sowohl für Speditionen, als auch für Tankstellenbetreiber.[33] Die Kosten, um eine LNG-Tankstelle aufzubauen und betriebsfähig zu machen, belaufen sich ungefähr auf 1½ Millionen Euro.[31]

Floating Liquefied Natural Gas (FLNG)[Bearbeiten | Quelltext bearbeiten]

Im Gegensatz zum praktizierten Verfahren, auf See gefördertes Erdgas per Pipeline zu einer nahen Küste zu leiten und dort in Flüssigerdgas umzuwandeln, zielt die Methode FLNG darauf ab, das Erdgas bereits auf See – nahe der Förderstelle – zu verflüssigen, zwischenzulagern und auf Transportschiffe umzuschlagen.[34] Dies soll auf quasi stationär in der Nähe der Förderstellen positionierten Großschiffen geschehen, ähnlich dem bei der Erdölförderung praktizierten Verfahren FPSO. Auf diese Weise lassen sich insbesondere küstenferne Erdgaslagerstätten erschließen, deren Ausbeutung bislang infolge der hohen Kosten für die Verlegung und den Betrieb einer Pipeline unwirtschaftlich ist.[34]

Eines der FLNG-Projekte ist Prelude FLNG von Royal Dutch Shell (Mehrheitsbeteiligung) und INPEX Corporation, das westlich von Australien im Browse Basin 2018 die Bohrung aufnehmen soll. Aus Kostengründen ist die weltweite Erdgasindustrie derzeit aber nicht dabei, weitere FLNG-Pläne umzusetzen.[35]

Gefahren[Bearbeiten | Quelltext bearbeiten]

Es besteht die Gefahr einer Entzündung des Gases bei der Verflüssigung oder der Vergasung im LNG-Terminal sowie bei Austritt der tiefkalten Flüssigkeit aus ihrem Transport- oder Lagerbehälter.

Hautkontakt führt zu Erfrierungen, ungeschützter Stahl kann Sprödbrüche erleiden. Wo verdampftes Methangas den Sauerstoff verdrängt, besteht Erstickungsgefahr.

Bei Austritt in Wasser verdampft die kalte Flüssigkeit aufgrund der hohen Wärmeleitfähigkeit des Wassers schnell. Dies sei insbesondere bei der Nutzung als Kraftstoff für die Schifffahrt zu beachten, so eine Sicherheits- und Risikostudie, die im April 2015 im Rahmen des LNG-Masterplan Rhein–Main–Donau erstellt wurde.[36] Co-Autor Brian Mo-Ajok von der Feuerwehr Rotterdam illustrierte die speziellen Gefahren für die Umgebung von Binnenwasserstraßen am 22. Februar 2017 auf einer Konferenz in Duisburg.[37]

CO2-Bilanz[Bearbeiten | Quelltext bearbeiten]

Die Nutzung von LNG als Kraftstoff wird aus Umweltsicht kritisch gesehen. Bei der Nutzung als Antrieb in Verbrennungsmotoren ohne Abgasbehandlungskatalysator kann in bestimmten Betriebszuständen das in LNG vorhandene Methan nicht vollständig verbrannt werden und gelangt durch den Auspuff in die Atmosphäre. Dies sind relativ nur kleine Mengen (1 bis 2 Prozent), aber durch eine etwa 32-fach höhere Treibhausgas-Wirkung[38] (Erwärmung der Atmosphäre) als Kohlendioxid ist die Nutzung von LNG klimaschädlicher, als sie rein durch die Emissionen aus der Verbrennung des Kraftstoffs wäre.[39]

Im Vergleich zum Transport von Erdgas in Pipelines hat LNG für kurze Überbrückungsdistanzen eine ungünstigere Treibhausgas-Bilanz. Sie ist auf die erforderliche zusätzliche Verarbeitung, den vergleichsweise höheren Verdampfungsverlust während des Transportes und den höheren Energieaufwand während der Produktion, der Verflüssigung, der Betankung, dem Transport und der Lagerung zurückzuführen. Je kürzer die Transportstrecke ist, je höher der Druck in der Pipeline und je weniger Verdichterstationen auf der Strecke sind, desto besser ist die CO2-Bilanz von Pipelines.

Die Prozesskette von LNG vor der Einspeisung in das Gasnetz besteht aus verschiedenen Prozessschritten (Gasförderung, Gasaufbereitung, Verflüssigung, LNG-Transport, Entladung und Speicherung, Regasifizierung). Die GFS der europäischen Kommission hielt im Jahr 2010 die LNG-Prozesskette für Treibhausgas-intensiver als Erdgas über Pipelines zu transportieren. Nach Meinung der Autoren einer (geopolitischen) Studie aus dem Jahr 2016 lohnt sich hingegen der Einsatz von LNG ab einer Entfernung von 6000 Kilometern.[40]

Leckagen ("Methanschlupf") und somit auch die Treibhausbilanz sind allerdings immer auch vom Alter der jeweiligen technischen Anlagen abhängig. Modernere (und zumeist größere) Anlagen zeigen einen geringeren "Methanschlupf" als ältere Anlagen. Die Prozesskette von LNG vor der Einspeisung in das Gasnetz besteht aus verschiedenen Prozessschritten in denen jeweils unterschiedliche Emissionentypen (Leckagen) auftreten können. Eine Übersicht zu den Emissionen zweier Prozessschritte zeigt die nachfolgende Tabelle. (Siehe dazu auch die Studie, den Beleg, zur nachfolgenden Tabelle.)

Übersicht Emissionen durch Verflüssigung und Transport (Primärquelle: „Potenzialanalyse LNG“, DVGW-EBI et al. 2016)[41]
Prozessschritt Zahlenwerte in der Literatur Einheit
Verflüssigung, Kleinanlage 8.167 - 16.667 g CO²-Äquivalent / GJ
Verflüssigung, Großanlage 4.167 - 8.333 g CO²-Äquivalent / GJ
Transport, Pipeline 0,64 - 5,28 g CO²-Äquivalent / GJ
Transport, Seeschiff 2.500 und 5.250 CO²-Äquivalent / km / GJ

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • The egg is laid · The use of LNG as a marine fuel is still curbed by a hen-and-egg problem. But more and more LNG-projects of ship owners, port and terminal operators point to a change. In: Hansa, Heft 8/2015, Schiffahrts-Verlag Hansa, Hamburg 2015, ISSN 0017-7504, S. 48/49
  • Klaus-Rüdiger Richter: LNG – „hip“ oder„Hype“? Tiefkalt verflüssigtes Erdgas erhitzt die Debatte um den Schiffstreibstoff der Zukunft. In: Waterkant, 2-16 von Juni 2016, Heft 122, S. 25–28, Herausg.: Förderkreis Waterkant e.V., Emsdetten, ISSN 1611-1583
  • LNG-Report, Wasser · Industrie · Straße 2017/2018. DVV Media Group, Hamburg 2017, ISBN 978-3-87154-612-9

Weblinks[Bearbeiten | Quelltext bearbeiten]

Commons: Flüssigerdgas – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Flüssigerdgas – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. DVGW: Daten und Fakten zu Liquefied Natural Gas (LNG) – Flüssigerdgas
  2. Thomas Reukauf und Laurent Maalem: LNG-Einsatz in Industrie und Gewerbe auch ohne Netzanschluss In: VIK Mitteilungen, 02/2013
  3. Linde Engineering: LNG-Terminals
  4. Germany Trade and Invest: „Russland greift nach seiner Chance am LNG-Markt“, ohne Ortsangabe, 2016, S. 4 online pdf (Memento vom 19. Oktober 2016 im Internet Archive)
  5. Rainer Hermann: Die Golfstaaten. Wohin geht das neue Arabien? München 2011, ISBN 978-3-42324875-4, S. 295
  6. Toil ahead for oil, but expect double trouble for LNG, The Sydney Morning Herald, 7. Dezember 2015, online
  7. Dunkle Wolken am LNG-Himmel über Australien, Germany Trade and Invest, 16. Januar 2016, online
  8. Gas rebalancing 1: Clearing the global gas glut, Cullum O'Reilly, LNG Industries, 12. Oktober 2016, online
  9. BP - Statistical Review of World Energy 2020 (69th edition). (PDF; 7,19 MB) BP p.l.c., 15. Juni 2020, S. 41, abgerufen am 5. Februar 2021 (englisch).
  10. Bundesministerium für Wirtschaft und Energie: Konventionelle Energieträger/Gas
  11. Debatte zur Regierungserklärung des Kanzlers bei zdf.de vom 27. Februar 2022
  12. Uniper prüft Möglichkeiten für LNG-Terminal in Wilhelmshaven in Der Stern vom 1. März 2022
  13. [ https://www.hanseatic-energy-hub.de/ Der Energiehafen in Stade]
  14. [ https://www.uvp-verbund.de/trefferanzeige?cmd=doShowObjectDetail&docuuid=71D971E7-E096-4950-A880-BD08141DE9B4&plugid=/ingrid-group:ige-iplug-mv Allgemeine Vorhabenbeschreibung ]
  15. Mitteilung des finnischen Wirtschaftsministeriums http://tem.fi/lng-terminaalien-investointituki
  16. Finland’s first LNG terminal starts commercial ops. In: LNG World News. (lngworldnews.com [abgerufen am 1. September 2017]).
  17. https://www.kauppalehti.fi/uutiset/tornioon-valmistuu-pohjoismaiden-suurin-nesteytetyn-maakaasun-terminaali/CZ6ir3r5. Abgerufen am 1. September 2017.
  18. Finland: Hamina LNG terminal construction starts. In: LNG World News. (lngworldnews.com [abgerufen am 1. September 2017]).
  19. Hans-Jürgen Reuß: Gas als alternativer Kraftstoff und bestmögliche Nutzung der Primärenergie. In: Hansa, Heft 12/2011, S. 28–30, Schiffahrts-Verlag Hansa, Hamburg 2011, ISSN 0017-7504
  20. Sverre Gutschmidt: LNG auf dem Weg in ein neues Zeitalter der Schifffahrt. In: Hansa, Heft 8/2013, S. 62–64, Schiffahrts-Verlag Hansa, Hamburg 2013, ISSN 0017-7504
  21. Wie sieht die Zukunft im Bereich LNG aus? In: ClassNK-Magazin, 66. Ausgabe, S. 2/3, JLA media, Hamburg 2014.
  22. Brennstoff mit Zukunft. In: ClassNK-Magazin, 66. Ausgabe, S. 4/5, JLA media, Hamburg 2014.
  23. Studie der Europäischen Kommission zu LNG als Schiffsbrennstoff. In: Schiff & Hafen, Heft 4/2015, S. 25.
  24. Michael vom Baur: LNG – ein neuer Kraftstoff in den Häfen der Ostsee. In: Hansa, Heft 8/2013, S. 66–69, Schiffahrts-Verlag Hansa, Hamburg 2013, ISSN 0017-7504
  25. Wolfhart Fabarius: Zweites Containerschiff mit LNG. In: Täglicher Hafenbericht vom 1. September 2015, S. 13.
  26. Reederei Ems: Projekt MS „Ostfriesland“, Projektseite, abgerufen am 24. September 2015.
  27. AIDA Cruises: Premiere im Hamburger Hafen: Am 14. Mai werden AIDAprima und AIDAsol in Hamburg mit sauberem Strom aus LNG betrieben - AIDA Kreuzfahrten. In: www.aida.de. Abgerufen am 5. Juni 2016.
  28. Ingrid Brunner: Frische Brise auf hoher See. In: sueddeutsche.de. 31. Dezember 2018, ISSN 0174-4917 (sueddeutsche.de [abgerufen am 1. Januar 2019]).
  29. Chinadaily: World's largest container vessels under construction in Shanghai. Abgerufen am 4. Januar 2019.
  30. André Germann: LNG: Schluss mit „Henne oder Ei“ · Versorgung und Nutzung wachsen parallel. In: Täglicher Hafenbericht vom 17. Februar, S. 1
  31. a b Boris Schmidt: Lastwagen mit LNG: Iveco und Scania geben Gas In: Frankfurter Allgemeine Zeitung, 3. Dezember 2017, abgerufen am 1. August 2018.
  32. Statistical Report 2017. (PDF-Datei) NGVA Europe, 19. Januar 2018, abgerufen am 1. August 2018.
  33. Günther Strobl: Einzige LNG-Tankstelle in Österreich könnte in Deutschland landen In: Der Standard, 28. Mai 2018, abgerufen am 1. August 2018.
  34. a b Floating LNG: Erdgas-Förderung auf dem Meer. Linde AG, archiviert vom Original am 5. Februar 2015; abgerufen am 13. Februar 2014.
  35. Wettkampf der Erdgasgiganten. In: orf.at. 12. Mai 2018, abgerufen am 26. Juli 2018.
  36. Das TEN-T-Programm der Europäischen Union zur Unterstützung des Rahmenplans Flüssigerdgas für Rhein – Main – Donau. Nachgeordnete Maßnahme 2.4: Technische Erkenntnisse, Sicherheit und Risikobewertung. Ergebnis 2.4.4: Studie zu Not- und Unfall-Einsätzen (Havenbedrijf Rotterdam N.V.) LNG-Masterplan Consortium, April 2015.
  37. Videos entfernt: Wie gefährlich ist LNG? Abgerufen am 19. Mai 2017.
  38. M. Etminan, G. Myhre, E. J. Highwood und K. P. Shine: Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing, Geophys. Res. Lett., 43, 12, 614-12, 623, doi:10.1002/2016GL071930 [1].
  39. Klaus-Rüdiger Richter: LNG – „hip“ oder„Hype“? Tiefkalt verflüssigtes Erdgas erhitzt die Debatte um den Schiffstreibstoff der Zukunft. In: Waterkant, 2-16 von Juni 2016, Heft 122, S. 25–28, Herausg.: Förderkreis Waterkant e.V., Emsdetten, ISSN 1611-1583
  40. Andreas Goldthau: Assessing Nord Stream 2: regulation, geopolitics & energy security in the EU, Central Eastern Europe & the UK, European Centre for Energy and Resource Security (EUCERS), London, 2016, S. 20 Online (pdf) (Archiviert vom nicht mehr verfügbarem Original)
  41. Jakob Wachsmuth, Stella Oberle; Fraunhofer-Institut für System- und Innovationsforschung ISI, Karlsruhe und Asif Zubair, Wolfgang Köppel; DVGW-Forschungsstelle am Engler-Bunte-Institut des Karlsruher Instituts für Technologie (KIT), Karlsruhe. Im Auftrag des Umweltbundesamtes: Wie klimafreundlich ist LNG? Kurzstudie zur Bewertung der Vorkettenemissionen bei Nutzung von verflüssigtem Erdgas (LNG). In: www.isi.fraunhofer.de. Fraunhofer-Institut für System- und Innovationsforschung ISI, Breslauer Straße 48, 76139 Karlsruhe, Mai 2019, S. 15, archiviert vom Original; abgerufen am 6. Mai 2022.