Verbrennungsmotor

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Ein Verbrennungsmotor ist eine Verbrennungskraftmaschine, die durch Verbrennung eines Kraftstoffs chemische Energie in mechanische Arbeit umwandelt. Dazu wird im Brennraum ein zündfähiges Gemisch aus Kraftstoff und Luft verbrannt. Kennzeichen der Verbrennungsmotoren ist die „innere Verbrennung“ - die Erzeugung der Verbrennungswärme im Motor. Die Wärmeausdehnung des so entstehenden Heißgases wird genutzt, um Kolben oder Läufer (beim Wankelmotor) zu bewegen. Die häufigsten Arten von Verbrennungsmotoren sind Otto- und Dieselmotoren.

Die kontinuierlich arbeitenden Strahl- und Raketentriebwerke sowie Gasturbinen zählen üblicherweise nicht zu den Verbrennungsmotoren, obwohl auch dort der Kraftstoff innerhalb der Maschine verbrannt wird. Dampfturbinen, Dampfmaschinen oder der Stirlingmotor sind keine Verbrennungsmotoren, da die für ihren Betrieb nötige Wärme durch „äußere Verbrennung“ erzeugt wird.

Viertakt-Ottomotor als Beispiel für einen Verbrennungsmotor. Benennung der Arbeitstakte:
1. Ansaugen
2. Verdichten
3. Arbeiten
4. Ausstoßen

Grundsätzliche Funktionsweise[Bearbeiten]

Bei allen Motoren mit innerer Verbrennung wird nach jedem Arbeitsspiel das beteiligte Gas gewechselt, also Abgas ausgestoßen und Frischgas zugeführt. Heutige Motoren verdichten das Gas, dann wird es bei hohem Druck verbrannt und wieder entspannt. Das Gas verrichtet Arbeit an einem Kolben und kühlt sich dabei ab. Je nach Bau- und Funktionsweise des Motors werden diese Vorgänge unterschiedlich verwirklicht. Wichtig für die Funktion als Motor ist, dass wegen der Verbrennung des Kraftstoff-Luft-Gemischs die Ausdehnung bei höherem Druck geschieht als das Verdichten. Der maximal mögliche Wirkungsgrad hängt von den Temperaturniveaus ab, auf dem die Verbrennungswärme zu- und abgeführt wird, und damit vom Verdichtungsverhältnis. Moderne Pkw-Ottomotoren erreichen im besten Arbeitspunkt (etwa in der Mitte des Drehzahlbandes und knapp unter der Volllastkurve) einen effektiven Wirkungsgrad von 36 %. Bei Dieselmotoren liegt dieser bei 43 %.[1] Die mechanischen Verluste sind fast nur von der Drehzahl abhängig, daher nimmt der Wirkungsgrad bei geringer Last stark ab.

Einteilung[Bearbeiten]

In der Geschichte des Motorenbaus sind viele Konzepte erdacht und realisiert worden, die nicht unbedingt in das folgende Raster passen, zum Beispiel Ottomotoren mit Direkteinspritzung oder Vielstoffmotoren. Zugunsten der Übersichtlichkeit werden diese Sonderfälle hier nicht betrachtet.

Dazu gehören z. B. der Wankelmotor (Ottomotor mit Rotationskolben und Schlitzsteuerung) oder Schiffsdieselmotoren, die oft als Zweitakt-Dieselmotor mit Auslassventilen konzipiert sind.

Nach dem Arbeitsverfahren[Bearbeiten]

Viertaktverfahren (Viertaktmotor)
Jeder der vier Arbeitsschritte läuft während eines Taktes ab. Mit Takt ist in diesem Fall ein Kolbenhub gemeint, das heißt eine vollständige Aufwärts- oder Abwärtsbewegung des Kolbens. Während eines Arbeitszyklus' mit vier Takten dreht sich die Kurbelwelle also zweimal. Der Gashub ist geschlossen, das heißt Frischgas und Abgas sind vollständig voneinander getrennt. In der Praxis kommt es aber doch zu einer kurzen Berührung während der sogenannten Ventilüberschneidung.
Zweitaktverfahren (Zweitaktmotor)
Auch beim Zweitaktverfahren laufen alle vier Arbeitsschritte ab, aber während zweier Kolbenhüben (= Takte). Dies ist möglich, weil ein Teil des Ansaugens und der Verdichtung (das Vorverdichten) außerhalb des Zylinders stattfindet, und zwar im Kurbelgehäuse unter dem Kolben oder in einem Lader. Die Kurbelwelle dreht sich während eines Arbeitszyklus nur einmal. Der Gaswechsel ist offen, das heißt, es kommt zu einer partiellen Durchmischung von Frischgas und Abgas.
Split-Cycle-Motor (Scuderi-Motor)
Der Scuderi-Motor arbeitet mit vier getrennten Takten, die jedoch auf zwei Zylinder aufgeteilt sind. Die vier Arbeitsschritte Ansaugen, Verdichten, Verbrennen und Ausstoß werden auf zwei Zylinder verteilt, die für ihre jeweiligen Aufgaben konstruktiv optimiert werden können. Es handelt sich um ein altbekanntes Verfahren, das jedoch erst jüngst (2007) zum Bau eines Prototyps geführt hat.

nach dem Bewegungsablauf[Bearbeiten]

nach dem Gemischbildungsverfahren[Bearbeiten]

Zum effektiven Betrieb ist das optimale Verbrennungsluftverhältnis des Kraftstoff-Luft-Gemisches erforderlich. Die Gemischbildung kann beim Dieselmotor nur innerhalb, beim Ottomotor auch außerhalb des Zylinders stattfinden.

Äußere Gemischbildung
Es wird ein zündfähiges Gasgemisch in den Zylinder geführt und dort verdichtet. Das ermöglicht hohe Drehzahlen, da die Verbrennung ohne Verzögerung erfolgt, sobald gezündet wird. Durch überhöhte Temperatur (heißer Motor, hohe Verdichtung bei Volllast) kann es zu unkontrollierter Selbstzündung kommen. Dieser Klopfen genannte Effekt begrenzt das Verdichtungsverhältnis und kann durch den Zusatz von Antiklopfmitteln zum Kraftstoff verhindert werden. Nach der Zündung kann die Verbrennung gewöhnlich nicht mehr beeinflusst werden. Die äußere Gemischbildung kann auf zwei Arten erfolgen:
Vergaser zerstäuben den Kraftstoff in feine Tröpfchen und bilden so ein Aerosol, das in die Zylinder geführt wird. Bis in die 1990er Jahre waren sie im Automobilbau üblich und werden heute fast ausschließlich nur noch in Kleinmotoren eingesetzt.
Bei der indirekten Einspritzung wird der Kraftstoff im Ansaugkanal oder kurz vor dem Einlassventil dem Luftstrom beigemengt. Vorteile gegenüber dem Vergaser sind unter anderem die schnellere und präzisere Steuerung der Kraftstoffmenge und die Lageunabhängigkeit (wichtig z. B. bei Flugzeugen).
Innere Gemischbildung
Im Zylinder wird nur Luft angesaugt und verdichtet. Der Kraftstoff wird erst unmittelbar vor der Verbrennung direkt in den Brennraum eingespritzt, weshalb der Wirkungsgrad durch höhere Verdichtung gesteigert werden kann. Nach Einspritzbeginn benötigt der Kraftstoff Zeit zum Vermischen und Verdampfen. Die Verbrennung erfolgt verzögert und begrenzt so die maximale Motordrehzahl.

nach dem Zündverfahren[Bearbeiten]

Funktionsprinzip eines Dieselmotors

Die Fremdzündung ist das Merkmal des Ottomotors. Dabei wird das Entzünden des Kraftstoff/Luft-Gemischs durch eine Zündkerze eingeleitet, optimal kurz vor dem oberen Totpunkt.

Die Selbstzündung ist das Merkmal des Dieselmotors. Dabei wird zuerst reine Luft stark verdichtet und dadurch erhitzt. Kurz vor dem oberen Totpunkt (OT) wird der Dieselkraftstoff eingespritzt, der sich durch die Hitze von selbst entzündet.

Die kontrollierte Selbstzündung wird derzeit für verschiedene Verbrennungsmotoren entwickelt. Die Gemischbildung soll intern aber früh erfolgen, damit das Gemisch bis zur Zündung gut durchmischt (homogen) ist. Dadurch werden bessere Emissionswerte erreicht.

nach dem Brennverfahren[Bearbeiten]

Mit Brennverfahren bzw. Verbrennungsverfahren bezeichnet bei Verbrennungsmotoren den Ablauf, mit dem die Verbrennung des Brennstoffs im Motor erfolgt.

nach der Füllungsart[Bearbeiten]

nach dem Kühlverfahren[Bearbeiten]

  • Flüssigkeitskühlung
  • Luftkühlung
  • Ölkühlung
  • Kombinationen aus Luft-/Ölkühlung (SAME)
  • Stickstoffkühlung

nach Bauformen und Anzahl der Zylinder[Bearbeiten]

Abhängig von der Anzahl der Zylinder werden/wurden Otto- und Dieselmotoren bzw. Viertakt- und Zweitakt-Motoren gebaut als:

Querschnittszeichnung eines Sechszylinder-V-Motors
Der Reihensternmotor Swesda M503 mit 42 Zylindern in sieben Zylinderbänken zu jeweils sechs Zylindern.

Die fettgedruckten Bauformen und Zylinderzahlen sind heute in Kraftfahrzeugen gebräuchlich. Der Verbrennungsmotor mit der höchsten Zahl an Zylindern, der je gebaut wurde, ist der Reihensternmotor Swesda M520 mit 56 Zylindern in sieben Zylinderbänken zu jeweils acht Zylindern.

Viertakt-Sternmotoren haben immer eine ungerade Zylinderzahl pro Stern. Der Grund dafür ist, dass beim Viertaktmotor jeder Zylinder nur in jeder zweiten Umdrehung gezündet wird, so dass eine durchgängige Zündfolge, die für den ruhigen, vibrationsfreien Lauf des Motors erforderlich ist, nur mit ungeraden Zylinderzahlen erzielt werden kann. Mehrfachsternmotoren wie die 14-Zylinder-Doppelsternmotoren BMW 801 und Wright R-2600 oder auch der P & W R-4360 (28 Zylinder in vier Sternen zu je sieben) haben jedoch eine gerade Zylinderzahl.

Davon sind die Reihensternmotoren zu unterscheiden, bei denen mehrere Zylinderbänke sternförmig um die Kurbelwelle angeordnet sind. Dies waren z. B. der Daimler-Benz DB 604, Rolls-Royce Vulture und Allison X-4520 (X-Motoren mit vier Zylinderbänken zu je sechs Zylindern = 24 Zylinder), Junkers Jumo 222 und Dobrynin WD-4K (ebenfalls 24 Zylinder, jedoch als Hexagon mit sechs Zylinderbänken zu je vier Zylindern und der Zwölfzylindermotor Curtiss H-1640 Chieftain mit sechs Zylinderbänken zu je zwei Zylindern.

Im Motorsport werden vereinzelt trotz der höheren Unwucht auch V-Motoren mit ungeraden Zylinderzahlen (drei oder fünf) gebaut.

Als langsam laufende Schiffsdiesel gibt es Reihenmotoren mit bis zu 14 Zylindern sowie V-Motoren mit 20 oder 24 Zylindern.

Ungewöhnliche Bauarten[Bearbeiten]

Der Wankelmotor ist eine Bauart, die nach Felix Wankel benannt ist. Beim Wankelmotor sind zwei kinematische Formen möglich: Zum einen der Kreiskolbenmotor, bei dem ein bogig-dreieckiger Kolben in einem oval-scheibenförmigen Gehäuse mit einer nur leicht oszillierenden Bewegung auf der Exzenterwelle (entspricht praktisch der Kurbelwelle beim Hubkolbenmotor) „eiert“. Zum anderen der Drehkolbenmotor, bei dem sowohl der bogig-dreieckige Läufer als auch die oval-scheibenförmige Hüllfigur (Trochoide) um ihre Schwerpunkte rotieren.

Der Stelzer-Motor, benannt nach seinem Erfinder Frank Stelzer, ist ein Zweitakt-Freikolbenmotor. Im Stelzer-Motor wird während des gesamten Arbeitsablaufes nur der Kolben bewegt. Seine unterschiedlichen Kolbendurchmesser öffnen und schließen verschiedene Öffnungen im Gehäuse und steuern damit gleichzeitig den Gaswechsel.

In der ersten Hälfte des 20. Jahrhunderts wurde eine Reihe exotischer Konstruktionen entworfen, die jedoch das Prototypstadium nicht überschritten. Durch Fortschritte der Werkstoffforschung sind Lösungen für Probleme alter Konstruktionen möglich.

Kraftstoffe[Bearbeiten]

Wichtige Motorenbauer[Bearbeiten]

Siehe auch[Bearbeiten]

Literatur[Bearbeiten]

  • Hans-Hermann Braess Vieweg Handbuch Kraftfahrzeugtechnik 6. Auflage Vieweg+Teubner Verlag, Wiesbaden ISBN 978-3-8348-1011-3.
  • Wolfgang Kalide: Kolben und Strömungsmaschinen. 1. Auflage. Carl Hanser Verlag, München/ Wien 1974, ISBN 3-446-11752-0.
  • Jan Trommelmans: Das Auto und seine Technik. 1. Auflage. Motorbuchverlag, Stuttgart 1992, ISBN 3-613-01288-X.
  • Hans Jörg Leyhausen: Die Meisterprüfung im Kfz-Handwerk. Teil 1, 12. Auflage, Vogel Buchverlag, Würzburg 1991, ISBN 3-8023-0857-3.
  • Wilfried Staudt: Handbuch Fahrzeugtechnik. Band 2, 1. Auflage. Bildungsverlag EINS, Troisdorf 2005, ISBN 3-427-04522-6.
  • Peter A. Wellers, Hermann Strobel, Erich Auch-Schwelk: Fachkunde Fahrzeugtechnik. 5. Auflage. Holland + Josenhans Verlag, Stuttgart 1997, ISBN 3-7782-3520-6.
  • Gernot Greiner: Verbrennungsmotoren im Auto- und Flugmodellbau. Poing bei München, Franzis Verlag, 2012, ISBN 978-3-645-65090-8.

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. Vieweg Handbuch Kraftfahrzeugtechnik S. 162 ISBN 978-3-8348-1011-3