Polyethylen

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Polyethen)
Wechseln zu: Navigation, Suche
Strukturformel
Struktur von Polyethylen
Allgemeines
Name Polyethylen
Andere Namen
  • Polyethen
  • PE
CAS-Nummer 9002-88-4
Monomer Ethen
Summenformel der Wiederholeinheit C2H4
Molare Masse der Wiederholeinheit 28,05 g·mol−1
Art des Polymers

Thermoplast

Kurzbeschreibung

hellgrau[1]

Eigenschaften
Aggregatzustand

fest (teilkristallin)

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Kalottenmodell einer Polyethylenkette
Struktur einer Einheit, Darstellung der Stereochemie: die Bindungswinkel betragen 109,5°, da jedes Kohlenstoffatom tetraedrisch (sp3-hybridisiert) ist.

Polyethylen (Kurzzeichen PE, veraltet Polyäthylen, gelegentlich auch Polyethen) ist ein durch Kettenpolymerisation von Ethen [CH2=CH2] hergestellter thermoplastischer Kunststoff mit der vereinfachten Ketten-Strukturformel

\left[- \mathrm{ CH_2{-}CH_2 } -\right]_n.

Polyethylen gehört zur Gruppe der Polyolefine. Hergestellt wird Polyethylen auf der Basis von Ethylengas, das konventionell petrochemisch hergestellt wird.

Historische Informationen[Bearbeiten]

Polyethylen wurde im Jahre 1898 vom Chemiker Hans von Pechmann entdeckt und am 27. März 1933 als Hochdruckpolyethylen erstmals durch Reginald Gibson und Eric Fawcett in den ICI-Laboratorien in England industriell unter einem Druck von ca. 1400 bar und einer Temperatur von 170 °C hergestellt, wo es sich als weißer, wachsartiger Belag auf der Innenwand des Autoklaven bildete. Als Rohstoff nutzten die Wissenschaftler Ethanol.[2]

Erst 1940 konnte ein wirtschaftlich rentables Herstellungsverfahren entwickelt werden. 1953 entwickelten der Deutsche Karl Ziegler und der Italiener Giulio Natta den Ziegler-Natta-Katalysator, mit dessen Hilfe eine Polymerisation von Ethen ebenfalls bei Normaldruck möglich wurde. Dafür erhielten die Wissenschaftler 1963 den Nobelpreis für Chemie. Als moderne Alternative zu Ziegler-Natta-Katalysatoren zählen die Metallocenkatalysatoren. Diese waren bereits 1950 bekannt, der Durchbruch gelang allerdings erst 1973, als Reichert und Meyer geringe Mengen Wasser zu einem System aus Titanocen und Alkylaluminiumchlorid hinzufügten. Die Metallocenkatalysatoren erzeugen Polyethylen mit engeren Verteilungen der molaren Masse und gleichmäßigerem Co-Monomereinbau als die Ziegler-Natta-Katalysatoren. In den 1980er Jahren führten Kaminsky und Sinn weitgehende Untersuchungen zum System Metallocen/Methylaluminoxan durch.

Kommerziell wird Polyethylen in großen Mengen seit 1957, vor allem in Rohrleitungssystemen für die Gas- und Wasserversorgung, für Kabelisolierungen und in Verpackungsmaterialien, etwa als Schrumpffolienverpackung, eingesetzt.

Gelegentlich wird die Bezeichnung Polyethen verwendet, um die historische Bezeichnung für Ethen zu vermeiden. Nach IUPAC werden Polymere nach der Wiederholungseinheit in der Kette bezeichnet,[3] wodurch sich die Bezeichnung Polymethylen ergäbe. Diese wird jedoch nicht verwendet, da es bei einer Herstellung durch Ethen keine Polyethylen-Moleküle mit ungerader Anzahl Kohlenstoffatome geben kann.

PE-Typen[Bearbeiten]

Man unterscheidet zwischen:

PE-HD (HDPE)
schwach verzweigte Polymerketten, daher hohe Dichte zwischen 0,94 g/cm3 und 0,97 g/cm3, („HD“ steht für „high density“).
PE-LD (LDPE, PEw)
stark verzweigte Polymerketten, daher geringe Dichte zwischen 0,915 g/cm3 und 0,935 g/cm3, („LD“ steht für „low density“).
PE-LLD (LLDPE)
lineares Polyethylen niederer Dichte, dessen Polymermolekül nur kurze Verzweigungen aufweist. Diese Verzweigungen werden durch Copolymerisation von Ethen und höheren α-Olefinen (typischerweise Buten, Hexen oder Octen) hergestellt („LLD“ steht für „linear low density“).
PE-HMW
hochmolekulares Polyethylen. Die Polymerketten sind länger als bei PE-HD, PE-LD oder PE-LLD, die mittlere Molmasse liegt bei 500–1000 kg/mol („HMW“ steht für „high molecular weight“).
PE-UHMW
ultrahochmolekulares HDPE mit einer mittleren Molmasse von bis zu 6000 kg/mol und einer Dichte von 0,93–0,94 g/cm3 („UHMW“ steht für „ultra high molecular weight“).
Eigenschaft PE-LD PE-HD PE-LLD
Spannung an der Streckgrenze in N/mm2 8,0–10,0 20,0–30,0 10,0–30,0
Dehnung an der Streckgrenze in % 20 12 16
Dielektrizitätszahl 2,4
Dichte (g/cm3) 0,915–0,935 0,94–0,97 0,87–0,94
Schmelzpunkt 130–145 °C [4] 130–145 °C [5] 45–125 °C [4]
Glastemperatur −100 °C [6] –70 °C [6]
Kristallinität 40–50 % 60–80 % 10–50 %
Elastizitätsmodul ~200 N/mm2 (23 °C) ~1000 N/mm2 (23 °C) 60–600 N/mm2 (23 °C)
Chemische Beständigkeit bedingt beständig, außer starken Oxidationsmitteln[4] beständig, außer starken Oxidationsmitteln[5] bedingt beständig
Wärmeformbeständigkeit 80 °C 100 °C 30–90 °C
Thermischer Ausdehnungskoeffizient 1,7 · 10−4 K−1 2 · 10−4 K−1 2 · 10−4 K−1

Molekularer Aufbau und Werkstoffeigenschaften[Bearbeiten]

Das unterschiedliche Werkstoffverhalten der verschiedenen Polyethylen-Typen lässt sich durch ihren molekularen Aufbau erklären. Die größte Rolle spielen dabei Molekulargewicht und Kristallinität, wobei die Kristallinität wiederum von Molekulargewicht und Verzweigungsgrad abhängig ist. Je weniger die Polymerketten verzweigt sind und je geringer das Molekulargewicht ist, desto höher ist der kristalline Anteil im Polyethylen.[7]:228

Schematisch lässt sich der Verzweigungsgrad der einzelnen Polyethylen-Typen wie folgt darstellen:

PE-HD Schematische Darstellung von PE-HD (Polyethylen hoher Dichte).
PE-LLD

Schematische Darstellung von PE-LLD (lineares Polyethylen niedriger Dichte)

PE-LD Schematische Darstellung von PE-LD (Polyethylen niedriger Dichte).

Die Polyethylen-Hauptketten sind schwarz dargestellt, die Kurzkettenverzweigungen sowie Nebenkettenverzweigungen in blau.

Die Polymerketten sind linear dargestellt, zu sehen ist außerdem die Zahl und die Länge der Verzweigungsstellen. Die Verzweigungen werden in Kurzkettenverzweigungen und Langkettenverzweigungen eingeteilt.

Bezüglich der Eigenschaften muss zwischen Hochdruck-Polyethylenen (hergestellt im Hochdruck-Verfahren, s. u., ausschließlich PE-LD) und Niederdruck-Polyethylenen (hergestellt im Niederdruck-Verfahren, s.u., alle anderen PE-Sorten) unterschieden werden. Im Hochdruckverfahren wird durch radikalische Polymerisation PE-LD hergestellt, dabei entstehen sowohl zahlreiche Kurzkettenverzweigungen wie auch Langkettenverzweigungen. Die Kurzverzweigungen bilden sich durch intramolekulare Kettenübertragungsreaktionen. Es handelt sich stets um Ethyl- oder Butyl-Seitengruppen.

Im Niederdruckverfahren kommt es kaum zu Kettenübertragungsreaktionen, sodass nur selten Langkettenverzweigungen und damit insgesamt nur schwach verzweigte PE-Ketten erzeugt werden. Völlig lineares (unverzweigtes) PE lässt sich jedoch auch im Niederdruckverfahren nicht herstellen (sondern nur durch die Zersetzung von Diazomethan, was kommerziell jedoch keine Bedeutung besitzt). Stattdessen werden im Niederdruckverfahren absichtlich Kurzkettenverzweigungen durch die Verwendung von Comonomeren wie 1-Buten oder 1-Octen eingeführt.[7]:234

Diese statistischen Kurzkettenverzweigungen reduzieren die Kristallinität und verbessern so Bearbeitbarkeit und Flexibilität.[7]:234 Auf diese Weise werden sowohl PE-HD wie auch PE-LLD hergestellt, PE-LLD jedoch mit einem höheren Comonomer-Anteil und dadurch geringerer Kristallinität.[7]:235 Allgemein entstehen im Niederdruckverfahren Polymere höherer Molmassen. Um die mittlere Molmasse gezielt zu begrenzen (und so Bearbeitbarkeit zu bewahren), kann im Niederdruckverfahren Wasserstoff zugegeben werden, im Hochdruckverfahren wird dies über die Zugabe von Ethanal erreicht..[8]

Die genauen Eigenschaften des Polyethylens werden durch das gewählte Verfahren bestimmt, sie können anhand der Dichte und des Schmelzflussindexes (MFR) festgemacht werden:

Polyethylene processes de.svg

  • Mit dem Ziegler-Suspensionspolymerisationsverfahren können Produkte mit Dichten größer als 0,940 g cm –3 und allen MFR-Werten (190/5) kleiner 100 g/10 min hergestellt werden, einschließlich ultrahochmolekularer Polyethylene.
  • Mit dem Phillips-Suspensionspolymerisationsverfahren können Polyethylene mit Dichten über 0,920 g cm –3 hergestellt werden, die Produkte weisen dabei eine enge Molmassenverteilung auf. Bei Produkten mit MFR-Werten (190/2,16) größer 0,5 g/10 min ist es jedoch auf Produkte mit höherer Dichte und breiter Molmassenverteilung beschränkt.
  • Mit dem Gasphasen-Polymerisationsverfahren können Polyethylene fast aller Dichten hergestellt werden, mit Ausnahme sehr geringer Dichten (faktisch Elastomere) und mit Ausnahme sehr hoher und sehr niedriger MFR-Werte (PE-UHMW und PE-Wachse).
  • Mit dem Lösungspolymerisationsverfahren können Polyethylene beliebiger Dichte hergestellt werden, es ist jedoch auf Produkte mit MFR-Werten größer 0,5 g/10 min beschränkt.
  • Mit dem Hochdruck-Polymerisationsverfahren lassen sich Polyethylene mit Dichten zwischen 0,915 bis maximal 0,935 g cm –3 und einem MFR über 0,25 g/10 min herstellen.

Zahlreiche andere Eigenschaften stehen ebenfalls in engem Zusammenhang mit Dichte und MFR und können daher ebenfalls über die Wahl des Produktionsverfahrens eingestellt werden.

Aufgetragen ist das Molekulargewicht von Polyethylen gegen die Kristallinität. Es sind die resultierenden, mechanischen Eigenschaften zu erkennen.

Durch eine korrekte Wahl von Produktionsverfahren, Produktionsbedingungen, Anteil und Art von Comonomeren, Katalysatoren etc. können gezielt Polymere mit erwünschten Eigenschaften hergestellt werden; neben harten oder weichen Kunststoffen sind auch Wachse, Fette und sogar Öle aus Polyethylen möglich.

Dabei sind Eigenschaften, die nur eine geringe Bewegung der Teile einer Proble relativ zueinander erfordern stärker von der Kristallinität und weniger vom Molekulargewicht der Probe abhängig sind; dies umfasst Schmelzpunkt, Erweichungspunkt, Elastizitäts- und Biegemodul, Streckgrenze und Oberflächenhärte. Eigenschaften die eine umfassendere Bewegung der Teile einer Probe umfassen sind dagegen stärker vom Molekulargewicht abhängig, dies umfasst die Zugfestigkeit, den Versprödungspunkt bei niedrigen Temperaturen und die Reißfestigkeit.[9]

Die allgemeinen mechanischen Eigenschaften in Abhängigkeit von Kristallinität und Kettenlänge können der Abbildung entnommen werden. Es ist zu erkennen, dass Substanzen mit hoher Kristallinität hart und spröde, solche mit niedriger Kristallinität weich und zäh sind. Genauer kann gesagt werden, dass eine hohe Kristallinität zu hoher Dichte, Steifigkeit, Härte, Abriebfestigkeit, Gebrauchstemperatur und Chemikalienbeständigkeit führt. Hingegen sind bei geriner Kristallinität (hohem amorphen Anteil) Festigkeit, Zähigkeit, Kerbunempfindlichkeit sowie Spannungsrissbeständigkeit stärker ausgeprägt. Gleichzeitig ist zu erkennen, dass Polyethylen mit sinkendem Molekulargewicht irgendwann seinen Kunststoffcharakter verliert und zunächst wachs-, dann fett- und schließlich ölartig wird. Dies wird beispielsweise auch zur Herstellung von Polyethylenwachs aus Polyethylen durch thermisches Cracken genutzt.[9][7]:228

Eigenschaften[Bearbeiten]

Ungefärbtes Polyethylen ist milchig-trüb und matt. Es fühlt sich wachsartig an und ist mit dem Fingernagel ritzbar. Es brennt mit tropfender, heller Flamme und brennt auch weiter, wenn man die Flamme entfernt. Das Brandabgas riecht ähnlich dem einer Wachskerzenflamme. Chemisch besteht es aus Wasserstoff und Kohlenstoff in Form hochmolekularer Alkane. Die Eigenschaften von Polyethylen lassen sich durch geeignete Copolymerisation gezielt ändern. Polyethylen besitzt eine hohe Beständigkeit gegen Säuren, Laugen und weitere Chemikalien.

Polyethylen ist teilkristallin. Durch höhere Kristallinität erhöhen sich die Dichte und auch die mechanische und chemische Stabilität.

Polyethylen nimmt kaum Wasser auf, es schwimmt auf Wasser. Die Gas- und Wasserdampfdurchlässigkeit (nur polare Gase) ist niedriger als bei den meisten Kunststoffen; Sauerstoff, Kohlendioxid und Aromastoffe lässt es hingegen gut durch.

Die Verwendbarkeit wird dadurch eingeschränkt, dass es bei Temperaturen von über 80 °C erweicht (HDPE, niederkristalline Typen erweichen früher). Polyethylen ohne geeignete Vorbehandlung ist nicht oder nur schlecht zu bedrucken oder zu kleben. Durch Sonneneinstrahlung kann PE verspröden, meist wird Ruß als UV-Stabilisator eingesetzt.

Eigenschaften im Überblick[Bearbeiten]

  • niedrige Dichte (0,87–0,965 g/cm³)
  • hohe Zähigkeit und Bruchdehnung
  • gutes Gleitverhalten, geringer Verschleiß (v. a. PE-UHMW)
  • Temperaturbeständigkeit von −85 °C bis +90 °C (hängt von Kristallinität ab, je niedriger desto weniger beständig gegen hohe Temperaturen. Bei Typen mit einer Kristallinität von ca. 20 % ist die obere Grenze der Temperaturbeständigkeit bei 30–50 °C)
  • optisch, milchig weiß (opak), je niedriger die Kristallinität (und damit die Dichte) desto durchsichtiger. Unterhalb einer Dichte von 0,9 g/cm³ ist PE durchsichtig.
  • sehr gutes dielektrisches Verhalten (spezifischer Durchgangswiderstand ca. 1018 Ohm/cm)
  • sehr geringe Wasseraufnahme
  • sehr gut spanabhebend und spanlos zu verarbeiten
  • brennt gut; rückstandsfrei: CO2 + H2O als Verbrennungsprodukte
  • PE ist beständig gegen fast alle polaren Lösungsmittel, Säuren, Laugen, Wasser, Alkohole, Öl
  • PE ist in allen typischen unpolaren Lösungsmitteln nur bei erhöhter Temperatur (oberhalb des Schmelzpunkts) löslich, verwendet wird z. B. 1,2,4-Trichlorbenzol für die Hochtemperatur-Gelpermeationschromatographie

Fügen von Teilen aus PE[Bearbeiten]

Da die meisten Kunststoffkleber mit Hilfe von Lösungsmitteln (z. B. Aceton) den Kunststoff „anlösen“, funktionieren sie meist nicht mit Polyethylen. Außerdem verhindert die unpolare hydrophobe Oberfläche dies, was auch das Bedrucken von PE stark erschwert. Nach einer Behandlung mit Laser, Plasmen (Hochdruckplasma z.B.„Corona-Entladung“ oder Niederdruckplasma) oder starken Säuren (z.B. Chromschwefelsäure) lässt sich PE jedoch verkleben und bedrucken. Das Kleben von PE ist mit Cyanacrylat-Klebstoffen nach der Vorbehandlung mit einem entsprechenden Polyolefin-Primer problemlos möglich.

Gebrochene Teile aus Polyethylen lassen sich dagegen besser mit einem regelbaren Heißluftgebläse verschweißen.

In der Gasversorgung werden Rohre aus PE-80, PE-100 und PE-X ausschließlich über die Heizwendelschweißtechnik, bzw. PE-80 und PE-100 bei größeren Durchmessern (> DN 200) auch mittels der Heizelementstumpfschweißtechnik (Spiegelschweißen) verbunden. In der Trinkwasserversorgung ist auch eine Verbindung mittels Steckfittingen weit verbreitet.

Herstellung[Bearbeiten]

Herstellungsanlage für Polyethylen in Norwegen
Schema des HDPE und LLDPE-Verfahrens

Konventionelle Herstellung[Bearbeiten]

Polyethylen wird durch Polymerisation von meist petrochemisch erzeugtem Ethylengas hergestellt. Im Hochdruckverfahren entsteht Weich-Polyethylen (PE-LD) mit einer stark verzweigten Molekülstruktur und deutlich amorphen Anteilen, im Niederdruckverfahren entsteht das Hart-Polyethylen (PE-HD) mit unverzweigten Molekülketten. Bei beiden Herstellungsverfahren fällt es zunächst als zähe Flüssigkeit an. Werden im Niederdruckverfahren geträgerte (heterogene) Katalysatoren eingesetzt, fällt das Polyethylen in Form fester Körner an. Industriell werden fast ausschließlich geträgerte Katalysatoren (Gasphasen- und Slurryverfahren) eingesetzt. Gelöste Katalysatoren werden meist zu Versuchszwecken in chemischen Laboren verwendet, hierbei fällt das Produkt als zähe Lösung oder auch als Pulver (bei hohen Molmassen) an.

  • PE-LD wird bei einem Druck von 1500 bis 3500 bar und Temperaturen von 100 °C bis 300 °C unter Einsatz von Initiatoren (Radikalstarter) (Sauerstoff oder Peroxide) aus dem Monomer Ethen hergestellt.
  • PE-HD und PE-LLD wird industriell nach dem Ziegler-Natta-Verfahren produziert. Kennzeichnend sind bei diesem Verfahren der geringe Druck (1 bis 50 bar) und die niedrige Temperatur (20 °C bis 150 °C). Als Katalysatoren werden Titanester, Titanhalogenide und Aluminiumalkyle verwendet. Alternativ erhält man PE-HD auch mit dem Phillips-Verfahren mit Chromoxidkatalysatoren bei Temperaturen von 85–180 °C und Drücken von 30–46 bar.
  • PE-UHMW ist mit modifizierten Ziegler-Katalysatoren herstellbar.

Seit einigen Jahren sind auch Single-Site-Katalysatoren (auch Metallocen-Katalysatoren genannt) in der Anwendung, die gegenüber Ziegler-Natta-Katalysatoren den Vorteil einer besseren Kontrolle der Reaktion und geringerem Aufreinigungsbedarf nach der Synthese aufweisen

Biobasierte Herstellung[Bearbeiten]

Zur Zeit der ersten großtechnischen Polyethylen-Synthesen der Imperial Chemical Industries war petrochemisch hergestelltes Ethen noch nicht in größeren Mengen verfügbar. Das nötige Ethen wurde stattdessen aus Ethanol gewonnen.[2]

Mit dem in Brasilien in großen Mengen produzierten Bioethanol wird dieses Verfahren heute wieder attraktiv, das brasilianische Unternehmen Braskem produziert seit 2010 Bio-basiertes Polyethylen in einer Anlage mit einer Jahreskapazität von 200.000 t, in der Polyethylen auf der Basis von fermentativ produziertem Bioethanol hergestellt wird. Dieses hat dieselbe chemische Zusammensetzung und damit dieselben Eigenschaften und Nutzungsmöglichkeiten wie das konventionelle Polyethylen.[10][11]

Chemische Modifizierung[Bearbeiten]

PE kann chemisch mittels Chlorierung, Sulfochlorierung oder Vernetzung modifiziert werden, wobei Werkstoffe mit anderen Eigenschaften entstehen. Chloriertes PE (PE-C) wird PVC u.a. zur Erhöhung der Schlagzähigkeit zugesetzt. Chlorsulfoniertes PE (CSM) dient als Ausgangsstoff für ozonbeständigen Synthesekautschuk.

Vernetzung[Bearbeiten]

Polyethylen-Makromoleküle lassen sich dreidimensional vernetzen. Dieses Material wird dann als PE-X oder als XLPE bezeichnet (früher auch als VPE[12]). Durch die räumliche Vernetzung wird die Temperaturbeständigkeit verbessert sowie die Schlagzähigkeit und die Spannungsrissbeständigkeit erhöht. Folgende Vernetzungsverfahren werden angewandt:

  • Peroxid-Vernetzung (PE-Xa)
  • Silan-Vernetzung (PE-Xb)
  • Strahlen-Vernetzung (PE-Xc), auch physikalische Vernetzung genannt (per Elektronenstrahlen, im Beta- und Gammabereich)
  • Azo-Vernetzung (PE-Xd)

Anwendungsgebiete[Bearbeiten]

Granulat aus PE-LLD
Granulat aus PE-LD mit Ruß als UV-Stabilisator

Polyethylen ist mit einem Anteil von ca. 29 Prozent der weltweit am meisten produzierte Kunststoff. Im Jahr 2001 wurden 52 Millionen Tonnen hergestellt.

PE-LD und PE-LLD
das Material wird vor allem in der Folienproduktion eingesetzt. Typische Produkte sind Müllsäcke, Schrumpffolien und Landwirtschaftsfolien. Ein wichtiges Einsatzgebiet ist die Verwendung als Siegelmedium in Verbundfolien. In geringem Umfang wird PE-LD und PE-LLD auch zur Herstellung von Kabelummantelungen, als Dielektrikum in Koaxialkabeln und für Rohre und Hohlkörper verwendet. Im Jahr 2009 wurde weltweit PE-LD für rund 15,9 Milliarden Euro (22,2 Milliarden US-Dollar) verkauft.[13] Der Weltmarkt für PE-LLD erreichte knapp unter 17 Milliarden Euro (24 Milliarden US-Dollar).[14]
PE-HD
Wichtigstes Anwendungsgebiet sind im Blasformverfahren hergestellte Hohlkörper, beispielsweise Flaschen für Reinigungsmittel im Haushalt, aber auch großvolumige Behälter mit einem Fassungsvermögen von bis zu 1000 l (sogenannte IBC). Über 8 Millionen Tonnen, also fast ein Drittel der weltweit produzierten Menge, wurden im Jahr 2007 für dieses Anwendungsgebiet verwendet. Vor allem China, wo erst 2005 Getränkeflaschen aus HDPE eingeführt wurden, ist wegen seines steigenden Lebensstandards ein wachsender Absatzmarkt für starre HDPE-Verpackungen.[15] Durch Extrusion hergestellte HDPE-Platten und HDPE-Folien werden zudem tiefgezogen und in der Verpackungsindustrie verwendet.[16] Außerdem wird PE-HD zu Spritzgussteilen, z. B. Verpackungen und Haushaltswaren, sowie auch zu technischen Artikeln verarbeitet. Zudem werden Fasern, Folien und Rohre aus Polyethylen im Extrusionsverfahren und Vakuumverfahren hergestellt. Aus PE-HD werden auch Folien für den Wasserbau und Deponiebau hergestellt sowie Geogitter und Geovliese für den Deponiebau oder den Straßen- und Böschungsbau. Ein weiteres Einsatzgebiet, das besonders in den Schwellenländern stark wächst, sind Kabelleitungen und Rohre, etwa für die Gas- und Trinkwasserversorgung. Hier werden oft Rohrleitungen des Typs PE-80 oder PE-100 eingesetzt, die Rohre aus Beton oder PVC ersetzen können. PE-HD ist gut schweißbar, bei Verlegung im Erdreich muss die Leitung aber in Sand eingebettet werden.
PE-UHMW
wird beispielsweise für Pumpenteile, Zahnräder, Gleitbuchsen, Implantate und Oberflächen von Endoprothesen verwendet, bei denen es auf besonders leichten Lauf bei geringstmöglichem Abrieb ankommt. Fasern aus PE-UHMW gehören, auf ihr Gewicht bezogen, zu den stärksten bekannten künstlichen Fasern (Dyneema®/DSM, GUR®/Ticona). Sie werden als chirurgisches Nahtmaterial verwendet. Sie sind wohl die einzigen bisher bekannten Fasern, welche als Material für einen Weltraumlift im Gespräch sind, da PE-UHMW eine der größten Reißlängen aller bekannten Stoffe besitzt.
PE-X
Vernetztes PE-X wird unter anderem für Warmwasserrohre und als elektrischer Isolator von Mittel- und Hochspannungskabeln eingesetzt. PE-X wird ebenfalls sehr häufig in der Gas- und Trinkwasserversorgung eingesetzt. Es eignet sich durch seine hohe Kratzfestigkeit (Kratztiefe max. 20 % der Wanddicke) besonders für grabenlose Verlegeverfahren, wie das Spülbohrverfahren oder die Einbringung in das Erdreich mittels Verlegepflug. PE-X besitzt sehr schlechte Schweißeigenschaften, welche eine Verschweißung nur mittels Heizwendelschweißen zulassen.

Handelsnamen[Bearbeiten]

Bekannte Handelsnamen sind: Alathon, Dyneema, Hostalen, Lupolen, Polythen, Spectra, Trolen, Vestolen.

Literatur[Bearbeiten]

Weblinks[Bearbeiten]

 Wiktionary: Polyethylen – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Commons: Polyethylen – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten]

  1. a b Datenblatt Polyethylene, medium density bei Sigma-Aldrich, abgerufen am 12. April 2011 (PDF).
  2. a b Kenneth S. Whiteley, T. Geoffrey Heggs, Hartmut Koch, Ralph L. Mawer, Woilfgang Immel: Polyolefins. In: Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 2005, doi:10.1002/14356007.a02_143.pub2.
  3. J. Kahovec, R. B. Fox and K. Hatada: Nomenclature of regular single-strand organic polymers (IUPAC Recommendations 2002) in Pure Appl. Chem., 2002, Vol. 74, No. 10, pp. 1921–1956 doi:10.1351/pac200274101921.
  4. a b c Datenblatt Low Density Polyethylen bei Acros, abgerufen am 19. Februar 2010.
  5. a b Datenblatt High Density Polyethylen bei Acros, abgerufen am 19. Februar 2010.
  6. a b Technische Kunststoffe, Hochtemperaturbeständige Polymere (Memento vom 15. Juli 2010 im Internet Archive), Januar 1999 (PDF, 6,5 MB) S. 9, aufgerufen am 12. Mai 2010.
  7. a b c d e  Wolfgang Kaiser: Kunststoffchemie für Ingenieure: Von der Synthese bis zur Anwendung. 2. Auflage. Carl Hanser, 2006, ISBN 978-3-446-43047-1, S. 228 (eingeschränkte Vorschau in der Google-Buchsuche).
  8.  Wilhelm Keim: Kunststoffe: Synthese, Herstellungsverfahren, Apparaturen. 1. Auflage. Wiley-VCH, Weinheim 2006, ISBN 3-5273-1582-9, S. 60 (eingeschränkte Vorschau in der Google-Buchsuche).
  9. a b R. B. Richards: Polyethylene-structure, crystallinity and properties. In: Journal of Applied Chemistry. 1, Nr. 8, 4. Mai 2007, S. 370–376. doi:10.1002/jctb.5010010812.
  10. Hans-Josef Endres, Andrea Siebert-Raths: Technische Biopolymere. Hanser-Verlag, München 2009; Seite 153 und 313. ISBN 978-3-446-41683-3.
  11. Braskem nimmt Biopolyethylen-Produktion auf. plastverarbeiter, 19. September 2010.
  12. ehow.com: What Is Pex Piping?
  13. Marktstudie Polyethylen-LDPE. Ceresana Research 2010.
  14. Marktstudie Polyethylen-LLDPE. Ceresana Research 2010.
  15. Marktstudie Polyethylen-HDPE. Ceresana Research 2013.
  16. HDPE Kunststoffplatten Abgerufen am 1. Dezember 2013