Calciumcarbonat

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von CaCO3)
Wechseln zu: Navigation, Suche
Strukturformel
Struktur des Ca2+-Ions Struktur des Carbonations
Allgemeines
Name Calciumcarbonat
Andere Namen
  • Kalziumkarbonat
  • Kalk
  • kohlensaurer Kalk
  • Kreide
  • E 170[1]
Summenformel CaCO3
CAS-Nummer 471-34-1
ATC-Code
Kurzbeschreibung

farb- und geruchsloser Feststoff[2]

Eigenschaften
Molare Masse 100,09 g·mol−1
Aggregatzustand

fest

Dichte

2,73 g·cm−3[2]

Schmelzpunkt

825–899 °C (Zersetzung)[2]

Löslichkeit

praktisch unlöslich in Wasser: 14 mg·l−1 (20 °C)[2]

Sicherheitshinweise
Bitte die eingeschränkte Gültigkeit der Gefahrstoffkennzeichnung bei Arzneimitteln beachten
GHS-Gefahrstoffkennzeichnung [2]
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze [2]
Toxikologische Daten

6450 mg·kg−1 (LD50Ratteoral)[3]

Thermodynamische Eigenschaften
ΔHf0
  • −1207,6 kJ/mol (Calcit)[4]
  • −1207,8 kJ/mol (Aragonit)[4]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Calciumcarbonat (fachsprachlich), Kalziumkarbonat oder in deutscher Trivialbezeichnung kohlensaurer Kalk, ist eine chemische Verbindung der Elemente Calcium, Kohlenstoff und Sauerstoff mit der chemischen Formel CaCO3. Als ein Calcium-Salz der Kohlensäure gehört es zur Stoffgruppe der Carbonate. Es ist ein farbloser, kristalliner Feststoff, dessen Kristallstruktur aus den Ionen Ca2+ und CO32− im Verhältnis 1:1 besteht.

Vorkommen[Bearbeiten]

Calciumcarbonat ist eine der am weitesten verbreiteten Verbindungen auf der Erde, vor allem in Form von Sedimentgesteinen. Calciumcarbonat tritt vor allem in der Form der Minerale Calcit und Aragonit auf. Eine weitere Modifikation des CaCO3 ist das Mineral Vaterit, welches besonders aus übersättigten Lösungen in Form mikroskopisch kleiner Kristalle ausfällt.

Calciumcarbonat ist der Hauptbestandteil des sedimentär gebildeten Kalksteins und des metamorphen Marmors, in der belebten Natur kommt es im Außenskelett von Krebstieren, Korallen, Muscheln, Schnecken sowie Einzellern vor. Die ersten Kalkgesteine nennenswerten Ausmaßes entstanden durch Stromatolithe vor über zwei Milliarden Jahren.

Entgegen landläufiger Meinung enthalten die Knochen und Zähne der Wirbeltiere kein Calciumcarbonat, sondern die ebenfalls calciumhaltigen Stoffe Hydroxylapatit (in Knochen)[5] und zusätzlich Fluorapatit in den Zähnen.

Eigenschaften[Bearbeiten]

Kalkpulver

Calciumcarbonat selbst ist in reinem Wasser kaum löslich. Bei Anwesenheit von gelöstem Kohlenstoffdioxid steigt die Löslichkeit jedoch um mehr als das Hundertfache. Auf diesem Effekt beruht die Verwitterung von Kalkgestein, wobei sich das leicht lösliche Calciumhydrogencarbonat Ca(HCO3)2 bildet.

Wegen seiner Löslichkeit ist Calciumhydrogencarbonat ein Bestandteil der meisten natürlichen Gewässer, je nach Gestein in unterschiedlichen Konzentrationen. Die Konzentration von Calciumcarbonat im Wasser wird in Deutschland mit „Grad deutscher Härte“ (1 °dH = 10 mg/Liter CaO oder 17,85 mg/Liter CaCO3 oder 0,18 mmol/l) angegeben. In Frankreich wird die Maßeinheit „Grad französischer Härte“ benutzt, wobei 1 °fH = 0,1 mmol/l Ca2+ oder Mg2+ Ionen entspricht. In der Schweiz wird entweder die direkte Angabe über mmol/l oder die französische Härte verwendet.

Der Umkehrung dieses Lösevorgangs, Entzug von Kohlensäure durch Temperaturerhöhung, verdanken die meisten natürlichen Vorkommen von Calciumcarbonat ihre Entstehung. Der komplizierte Mechanismus, der an manchen Wasserläufen sichtbar ist, so etwa bei den Kalkterrassen in Pamukkale (Türkei), wird durch das Kalk-Kohlensäure-Gleichgewicht definiert.

Auch durch andere saure Bestandteile der Luft sowie durch Nitrifikation im Boden wird Calciumcarbonat gelöst. In der Luft enthaltene Schwefeloxide bilden in wässriger Umgebung Schwefelsäure (H2SO4). Diese verwandelt Kalk in Calciumsulfat (CaSO4) oder Gips (CaSO4 · 2 H2O). Calciumsulfat ist mit etwa 2 g/l zwar ebenfalls wenig wasserlöslich, aber besser löslich als Calciumcarbonat, was zu einem langsamen Auswaschen von Kalkoberflächen durch Feuchtigkeit führt.

Modifikationen in der Natur[Bearbeiten]

Der David von Michelangelo, eine der bekanntesten Marmorstatuen

In der Natur bildet Calciumcarbonat verschiedene Gesteine, die zwar chemisch identisch sind, sich jedoch in mancherlei Hinsicht unterscheiden.

Kreide[Bearbeiten]

Kreide ist ein feines, mikrokristallines Sedimentgestein, das durch Ablagerung von durch photosynthetischen Kohlensäureentzug gefälltem Calcit sowie der aragonitischen Schalen von fossilen Kleinlebewesen, wie Coccolithen der Coccolithophoriden und Schalen der Foraminiferen, entstanden ist. Kreide tritt an zahlreichen Standorten entlang des europäischen Kreidegürtels zutage, von Großbritannien über Frankreich bis hin zur Insel Rügen in Norddeutschland, und wird stellenweise abgebaut. Seekreide am Grund von Seen oder in verlandeten Seebecken besteht fast vollständig aus gefälltem Calcit. Die Tafelkreide der Technik wird dagegen vor allem aus Gips (Calciumsulfat) hergestellt.

Kalkstein[Bearbeiten]

Kalkstein wird ebenfalls überwiegend von Lebewesen gebildet und ist stärker verfestigt als Kreide. Die Kalkablagerung geschieht entweder direkt oder indirekt aus den Überresten der Lebewesen, wie zum Beispiel von Schnecken, Muscheln, gesteinsbildenden Korallen und Schwämmen, die Calciumcarbonat zum Aufbau von Außen- oder Innenskeletten abscheiden. Indirekt wird er dadurch gebildet, dass Lebewesen, vor allem phototrophe, CO2 assimilieren und so das Milieu alkalisieren, was zur Ausfällung von Calciumcarbonat führt. Die Größe der Carbonatkristalle liegt zwischen derjenigen von Kreide und Marmor. Große Kalkstein-Vorkommen befinden sich zum Beispiel auf der Schwäbischen und Fränkischen Alb, in den Kalkalpen und den Westalpen, im Himalaya und in vielen anderen Gebieten.

Marmor[Bearbeiten]

Marmor ist ein grobkristallines, metamorphes Gestein, das entsteht, wenn Kreide, Kalkstein oder Dolomit unter dem Einfluss hoher Temperaturen und/oder hoher Drücke (über 1000 bar) umkristallisiert werden. Große Marmor-Vorkommen finden sich in Nordamerika und in Europa beispielsweise in Südtirol (Laas), Österreich (Gummern), Norwegen (Molde) oder im italienischen Carrara, der Heimat des reinweißen Statuario, aus dem Michelangelo seine Skulpturen schuf.

Synthetisches Calciumcarbonat[Bearbeiten]

Synthetisches Calciumcarbonat wird als PCC (englisch precipitated calcium carbonate „gefälltes Calciumcarbonat“) bezeichnet – im Unterschied zu GCC (engl. ground calcium carbonate „gemahlenes Calciumcarbonat“). Es wird durch Einleiten von Kohlenstoffdioxid in Kalkmilch (Calciumhydroxid) gefällt und so als Präzipitat gewonnen:

\mathrm{CaCO_3 \longrightarrow CaO + CO_2}
\mathrm{CaO + H_2O \longrightarrow Ca(OH)_2}
\mathrm{Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O}

Die Fällung erfolgt bei einem Feststoffgehalt von etwa 20 %. Über die Prozessführung (Temperatur, Konzentration) können unterschiedliche Kristallmodifikationen (Kristallmorphologien) erzeugt („gezüchtet“) werden, bevorzugt rhomboedrische oder skalenoedrische Kristallform. Weil mit hochreinen Ausgangsprodukten gearbeitet werden kann, sind die PCCs besonders weiß und haben auch Vorteile bezüglich der Opazität. Inzwischen erzeugen große Papierfabriken PCC in einem „Verbund“, indem sie Kohlenstoffdioxid, das bei der Verbrennung in Kraftwerken in Form von Rauchgasen entsteht, durch Bindung an Calciumhydroxid wieder rückgewinnen. Dies stellt jedoch keinen Beitrag zur Reduzierung der Kohlenstoffdioxid-Konzentration in der Atmosphäre (Klimawandel) dar, weil bei der zuvor notwendigen Herstellung von Kalkhydrat natürlicher Kalkstein gebrannt werden muss, wobei wieder CO2 freigesetzt wird.

Verwendung[Bearbeiten]

Natürliches Calciumcarbonat (Kalkstein) wird in großen Mengen als Rohstoff für die Baustoff-Industrie, als Zuschlagstoff in der Stahlindustrie, als mineralischer Dünger, als Futterkalk und als mineralischer Füllstoff in diversen industriellen Anwendungen verwendet (z. B. in Papieren, Farben, Lacken, Putzen, Kunststoffen und Rückseitenbeschichtungen von Teppichen). Insgesamt werden jährlich über fünf Milliarden Tonnen Kalkgestein abgebaut.

Baustoff[Bearbeiten]

Das Haupteinsatzgebiet ist die Herstellung von Zement (Calciumsilicat, Calciumaluminat) und Branntkalk.

Durch Brennen von Kalk entsteht Branntkalk. Aus diesem wird durch Löschen mit Wasser Kalkhydrat (Calciumhydroxid Ca(OH)2, gelöschter Kalk) hergestellt. Mit dem Kohlenstoffdioxid der Luft reagiert er wiederum zu Kalk und schließt den technischen Kalkkreislauf. Kalkhydrat und Kalk eignen sich als Putz oder Wandbeschichtungen wie dem Tadelakt. Die ersten Entdecker dieses Phänomens waren die Römer, die im großen Stile Kalkbrennanlagen betrieben.

Füllstoff[Bearbeiten]

Nach dem weltweit verkauften Volumen ist Calciumcarbonat der wichtigste Füllstoff.[6] Obgleich mehr als fünf Prozent der Erdkruste aus Calciumcarbonat-Gesteinen besteht, sind nur wenige Lagerstätten für die Gewinnung von Füllstoffen geeignet, die möglichst weiß sein sollen. Der größte industrielle Anwender von weißen Calciumcarbonaten ist mit einer Menge von über 10 Millionen Tonnen (weltweit) pro Jahr die Papierindustrie, danach folgt die Kunststoff- und die Baustoff-Industrie (Putze und Farben) mit insgesamt nochmals 15 Millionen Tonnen pro Jahr. Für den Einsatz in der Papierindustrie, vor allem als Streichfarbe, werden in Europa insbesondere Lagerstätten in Frankreich, Italien, Deutschland, Norwegen und Österreich abgebaut, wobei das Mineral durch Nassmahlung zerkleinert und als Slurry (teilweise per Tankschiff) in den Handel kommt.

Weitere Einsatzbereiche[Bearbeiten]

Calciumcarbonat fand früher auch als Tafelkreide Verwendung, insbesondere in Frankreich als sogenannte Champagnerkreide, die aus Kreidegestein besteht, einem chemisch sehr reinen Calciumcarbonat. Etwa 55 Prozent der in Deutschland verkauften Kreide besteht heute aus Gips (Calciumsulfat).[7]

Calciumcarbonat ist als Lebensmittelzusatzstoff und -farbstoff (E 170) zugelassen und wird beispielsweise häufig beim Backen von Brötchen eingesetzt. Für andere Anwendungen wird Calciumcarbonat gebrochen und/oder gemahlen und kommt stückig oder als Mehl in den Handel. Im Speisesalz ist es als Rieselhilfe enthalten.

Für einige Anwendungen sind natürliche Calciumcarbonate nicht optimal, so dass hier synthetische Calciumcarbonate verwendet werden. Mit der Bezeichnung Hydro-Calcit wird synthetisches Calciumcarbonat in der Wassertechnik zur Entsäuerung von Wässern mit „aggressiver Kohlensäure“ verwendet.

Siehe auch[Bearbeiten]

Literatur[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. Hans-Joachim Rose: Die Küchenbibel. Enzyklopädie der Kulinaristik. Seite 161.
  2. a b c d e f g Eintrag zu CAS-Nr. 471-34-1 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 20. August 2008 (JavaScript erforderlich).
  3. Datenblatt Calciumcarbonat bei Merck, abgerufen am 5. August 2008.
  4. a b David R. Lide (Ed.): CRC Handbook of Chemistry and Physics. 90th Edition (Internet Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Standard Thermodynamic Properties of Chemical Substances, S. 5-19.
  5. Wissenschaft-Online-Lexika: Eintrag zu Knochen im Kompaktlexikon der Biologie. abgerufen am 3. August 2011.
  6. Marktstudie Füllstoffe. Ceresana Research 2007.
  7. Compakt Handbuch Chemie 1993, ISBN 3-8174-3560-6, S. 387.