Ortsbestimmung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Ortsbestimmung, Positionsbestimmung oder Verortung, auch Lokalisierung ist die Ermittlung des Ortes in Bezug zu einem definierten Fixpunkt (Bezugssystem). Seemännisch wird diese Aufgabe "gissen" genannt (etymologisch von englisch "guess", englischer Fachbegriff "dead reckon"). Ortsbestimmung im Speziellen ist die Bestimmung des eigenen Standortes, hingegen wird die Bestimmung der Position eines fernen Objekts Ortung genannt. Die bloße Feststellung der Anwesenheit eines Objekts wird hingegen Detektion genannt.

Eine Ortsbestimmung betrifft üblicherweise Orte im Freien. Für Echtzeit-Anwendungen sind solche Systeme nach ISO 19762-5[1] standardisiert. Eines der bekanntesten und meistverbreiteten Systeme ist das satellitengestützte Global Positioning System (GPS), dessen Miniaturisierung den Einbau in vielen Smartphones und Tabletcomputern ermöglicht.

Moderne elektronische Systeme (funkgestützt, optisch oder akustisch) ermöglichen heute auch die genaue Ortsbestimmung im Innern von Gebäuden. Zu beachten sind dabei einige Besonderheiten der Messverfahren zwischen reflektierenden Flächen, doch entsprechende Lösungen sind bisher nicht standardisiert.

Geometrie[Bearbeiten]

Die mathematischen Verfahren der Ortsbestimmung sind durch die euklidische Geometrie der ebenen Dreiecke (Trigonometrie) und der Kugeldreiecke (Sphärische Trigonometrie) definiert. Zur Ortsbestimmung bestehen folgende mathematischen Mindestbedingungen:

  • Ebene Dreiecke werden durch drei Größen, davon mindestens eine Länge, eindeutig bestimmt.
  • Kugeldreiecke werden durch vier Größen, davon mindestens eine Länge, eindeutig bestimmt.
  • Orte auf der Ebene werden durch zwei Größen und eine Bezugsgröße sowie eine Orientierungsgröße (Drehwinkel) bestimmt.
  • Orte im Raum werden durch drei Größen und eine Bezugsgröße sowie eine Orientierung bestimmt.
  • Orte auf der Kugeloberfläche werden durch zwei Größen und eine Bezugsgröße sowie eine Orientierung bestimmt.
  • Orte im Kugelvolumen werden durch drei Größen und eine Bezugsgröße sowie eine Orientierung bestimmt.

Die (nicht eindeutige) Bestimmung eines Ortes durch eine Linie, die durch diesen Ort geht und die sich auf eine weitere Linie, die Standlinie, bezieht, nennt man Peilung. Für die eindeutige Bestimmung eines Ortes durch Peilungen benötigt man außer der in Richtung und zwei Punkten bekannten Standlinie und der Orientierung gegenüber dieser Standlinie genau zwei Peilungen. Mehr als zwei Peilungen können die Genauigkeit verbessern.

Die (nicht eindeutige) Bestimmung eines Ortes durch eine Linie, die durch diesen Ort geht und die eine Metrik für den Abstand einschließt, nennt man Entfernung. Für die eindeutige Bestimmung eines Ortes durch Entfernungen benötigt man außer der in Richtung und zwei Punkten bekannten Standlinie und der Orientierung gegenüber dieser Standlinie genau zwei Entfernungen. Mehr als zwei Entfernungen können die Genauigkeit verbessern.

Ort und Lage (Orientierung)[Bearbeiten]

In räumlichen Bezugssystemen ist zwischen Position (dem Ort im Raum) und der Lage (Orientierung im Raum) zu unterscheiden. Ein Körper kann seine Raumlage durch Verdrehung ändern, ohne seinen Ort zu ändern und umgekehrt. Das Bezugssystem erfasst beide Aspekte, sodass die vollständige räumliche Angabe eines Objekts seinen Ort und seine Orientierung erfordert.

Wird die Ortsangabe eines Objekts um seine Bewegung erweitert, sind auch die Zeiten anzugeben, zu denen die Orts- und Lagedaten gelten.

Die Verwendung der Begriffe Ort (Position durch Angabe der Koordinaten und ihrer Metrik) sowie Lage (Orientierung der Koordinaten und Lagewinkel im Raum) ist vielfach unscharf, ebenso wie bei Beschreibungen der Einmessung. So erfasst eine Peilung nicht den Ort, sondern lediglich eine Richtung (bzw. einen Winkel) zum angepeilten Ort. Eine Entfernungsmessung erfasst nicht die Lage des Objekts relativ zum Bezugspunkt, sondern nur die Strecke bis zu diesem Ort.

Die terrestrische Navigation misst für Ortsbestimmungen überwiegend nur Positionen in einem Bezugssystem, die Inertialnavigation hingegen nur die Bewegung. Die erforderlichen Integrationskonstanten zur Bestimmung von Ort und Lage können aus gemessenen Beschleunigungen und Winkelgeschwindigkeiten inertial nicht direkt ermittelt werden. Dazu benötigt man weitere Instrumente wie nordsuchende Kreisel oder hilfsweise Magnetkompass und Odometer, oder auch die Ermittlung des zurückgelegten Weges aus dem Integral punktuell gemessener Geschwindigkeiten über die einzelnen gemessenen Zeiten[2].

  • Die Änderung eines Objekts in Ort und Raumlage wird korrekt Positionierung genannt.
  • Die Änderung eines Objekts im Ort nennt man Verschiebung oder Translation.
  • Die Änderung eines Objekts in der Raumlage nennt man Drehung oder Rotation.
  • Die Bestimmung des Ortes eines Objekts nennt man Lokalisierung oder Ortung.
  • Die Bestimmung der Bewegung eines Objekts durch mehrere Orte nennt man Spur.
  • Die Bestätigung eines vermuteten Ortes durch einen weiteren Meßpunkt mittels Peilung nennt man Bestätigter Ort.

Eigenortsbestimmung und Fremdortung[Bearbeiten]

Um den Begriff Ortsbestimmung zu präzisieren, bezeichnet man:

  • die Bestimmung der Lage (Ort) oder Bahn (Spur) eines Objektes oder eines von einem Objekt ausgehenden Signals als Fremdortung,
  • die Bestimmung des eigenen Ortes als Eigenortsbestimmung. Sie legt den Standort beispielsweise als Schnittpunkt der Standlinien fest.

Jede Ortsbestimmung wird mittels Koordinaten in einem Koordinatensystem bezeichnet oder mit anderen Beschreibungsmitteln gegenüber der Umgebung herausgehoben.

Methoden der Ortsbestimmung[Bearbeiten]

Die Methoden der Ortsbestimmung sind so vielfältig wie die Fachgebiete, die sie benötigen.

  • Die Reichweite geht vom Nanobereich (Physik) über einige Zentimeter (Kartometrie) über 100 km (Navigation), 30.000 km (GPS) bis zu vielen Lichtjahren in der Astronomie.
  • Die Messmethoden sind vor allem Entfernungen, Winkel, Richtungen, Höhen und Laufzeiten
  • Die Koordinaten sind 1D (wie im Schienenverkehr oder bei der Odometrie), 2D (polar, geografisch), 3D (räumlich), bei Zeitreihen auch 4D
  • Die resultierende Position kann relativ sein oder absolut.

Geodätische Ortsbestimmung[Bearbeiten]

Hauptartikel: Geodäsie und Vermessung

Die Ortsbestimmung im technischen Sinn der Geodäsie bedeutet die Einmessung der Position einzelner Vermessungspunkte und des Verlaufs von Grenzlinien oder Schichtlinien auf der Erdoberfläche. Als globale Rechenfläche dient das Erdellipsoid, für lokale Aufgaben ein ebenes (2D) Koordinatensystem. Die Punktbestimmung erfolgt überwiegend durch Entfernungs- und Winkelmessung, vereinzelt auch durch spezielle Standlinien. Dementsprechend wird durch mindestens (n+1) Distanzen die Eindeutigkeit von Vermessungen weiterer Punkte in einem Raum der Dimension n bestimmt. Zusätzliche Messungen verbessern die numerische Genauigkeit.

Koordinatensysteme[Bearbeiten]

Bekannte Koordinatensysteme für Ortsdarstellungen lassen sich ineinander überführen. Vorherige Vereinfachungen bei Projektionen oder Idealisierungen liefern Fehler bei solchen Transformationen.

Planare Koordinaten (2D)[Bearbeiten]

Üblich ist die Verwendung von planaren mathematischen Koordinatensystemen mit einheitlichem Bezugspunkt.

  • Kartesische Koordinaten für ebene Flächen und abgeleitete, meist verschobene, Gitternetze
  • ebene Kugelkoordinaten für die Erdoberfläche und abgeleitete, auch projizierte Gitternetze

Für einen Punkt in einem zweidimensionalen (n=2) Koordinatennetz werden mindestens drei (n+1) Bestimmungsgleichungen benötigt.

Kubische Koordinaten (3D)[Bearbeiten]

Eine vollständige Beschreibung eines Punktes im Raum wird durch eine dreidimensionale Koordinatenangabe mit einem Radius (oder der Höhe), der Breite (Latitude) und der Länge (Longitude) erreicht. Für einen Punkt in einem dreidimensionalen (n=3) Koordinatennetz werden mindestens vier (n+1) Bestimmungsgleichungen benötigt.

Nicht üblich ist die technische Verwendung planarer Koordinatensysteme auf unregelmäßig gekrümmten Flächen. Dann wird zur Vereinfachung eine Approximation für eine Ebene oder Kugel verwendet.

Dreidimensionale Ortsangabe[Bearbeiten]

Polarkoordinaten[Bearbeiten]

Hauptartikel: Polarkoordinaten
  • Richtung und Entfernung von einem Vermessungspunkt, einer Kirche usw.
  • Kurs und Distanz vom/zum nächsten Hafen
  • polarer Abstand gibt lediglich die Distanz zum Bezugspunkt an, weist aber keine Richtung aus
  • Peilungen geben zwei Richtungen an, aber keine Distanz. Die wird über den Basisabstand der Bezugspunkte ermittelt.

Geografische, natürliche Koordinaten[Bearbeiten]

Hauptartikel: Geographische Koordinaten

Mentale Festlegung[Bearbeiten]

Eine mentale Orientierung erfolgt andauernd – unbewusst, intuitiv oder ausdrücklich, ob zu Fuß oder in einem Fahrzeug.

  • Lage bezüglich eines bekannten Objektes, wie „3 Meter rechts vom Eingangstor“
  • Lage in einem Raster (geometrisch oder mental), wie „an der 3. Kreuzung links, 4. Haus rechts“
  • Lage im Raum, wie „100 Meter oberhalb (hangaufwärts) der Berghütte“
  • Richtung gegenüber der Sonne (Sonne im Rücken).
  • Bewegung neben einem Nachbarn (gleichauf)

Wichtige Messmethoden der Ortsbestimmung[Bearbeiten]

Aus dem Vorstehenden ergibt sich von selbst die Art der in Frage kommenden Messungen.

Ortsangabe in relativen Koordinaten[Bearbeiten]

Relative Koordinaten werden auf eingegrenzten Flächen und in Räumen verwendet. Dort werden ein oder mehrere Bezugspunkte willkürlich gewählt. Einzelne bekannte Punkte, Linien, Flächen oder Räume beschreiben auch ohne exakte Koordinatenangabe ein Bezugssystem.

Ortsbestimmung mit Indexpunkten[Bearbeiten]

In der Transportlogistik ist es häufig hinreichend, eine Passage an einem Ort vorbei zu registrieren. Dann ist die Identität des Objekts zusammen mit der Zeitinformation der Passage ein Gültigkeitsdatum zu der bereits bekannten Ortsinformation des Indexpunkts. Das gilt entsprechend für das Überqueren von Linien, für das Befahren einer Fläche oder für den Aufenthalt in einem Raum.

Standlinien als Bezugssystem und Messverfahren[Bearbeiten]

In den meisten Systemen werden mehrere Messverfahren benutzt und deren Ergebnisse kombiniert. Die folgenden Nennungen beschreiben allein keine vollständigen Messverfahren.

Entfernungs-, Winkel- und Höhenmessung[Bearbeiten]

Generell werden alle bekannten Modelle der Messtechnik verwendet, Wegen der großen Distanzen und der Auswirkung kleiner Winkelfehler wird vorzugsweise mit optischen und quasi-optischen (Funk) Messmethoden für Längen und Winkel sowie mit verschiedenen Zeitmessverfahren für Zeitdifferenzen und Laufzeitdifferenzen gearbeitet. Zusätzlich werden für die Höhenmessung barometrische Modelle und für die Nordorientierung dynamisch gravimetrische und magnetische Modelle verwendet.

Beispiele für verwendete Messverfahren sind für die

Astronomische, Funk- und Satellitenortung[Bearbeiten]

Ortsbestimmung beim natürlichen Hören und beim Stereohören[Bearbeiten]

Die Bestimmung der Richtung eines gehörten Objekts nennt man in Fachkreisen Lokalisation. Wir lokalisieren durch natürliches Hören die Schallquelle und bei der Wiedergabe der Lautsprecherstereofonie lokalisieren wir die Phantomschallquelle, was mit Richtungslokalisation bezeichnet wird. Diese gehörte Lokalisation ist keine Ortung in der üblichen Begrifflichkeit.

Geodätische Messmethoden[Bearbeiten]

  • Lateration, Abstand des Zielobjekts ist durch optische Messung über eine Laufzeit erfasst und Distanznetze (Trilateration),
  • Angulation: Position des Zielobjekts ist durch die Winkel mindestens zweier Fixpunkte zum Objekt gegeben und Vermessungsnetze (Triangulation),
  • Polarmethode (bis etwa 500 m),
  • Polygonzug (je Messpunkt etwa 100 m),
  • Methode der freien Stationierung (mittels identischer, 2- bis 3-fach eingemessener Punkte)

Sonstige Verfahren[Bearbeiten]

Kompakte Lösungen[Bearbeiten]

Für industriellen Bedarf und in Dienstleistungsprozessen werden kompakte Lösungen benötigt, die auch unter Sichtbeschränkungen hinreichende Ergebnisse liefern. Dazu gehören Systeme wie

Funketiketten (RFID)[Bearbeiten]

Im Zusammenhang mit dem Einsatz von passiver RFID-Technik wird oft über die Möglichkeit geschrieben, sie sei zur Ortsbestimmung oder Lokalisierung geeignet (siehe Suchmaschinen-Ergebnisse der Wortkombination "RFID +Ortsbestimmung"). Insoweit würde jedes Lesegerät eine Ortung von RFID-Transpondern ermöglichen. Grundsätzlich ist es jedoch -- wie der Name Radio Frequency Identification besagt -- nur ein Mittel zur Identifizierung durch Radiosignale. Eine Lokalisierung kann daher nur mittelbar durch die momentanen Ort eines RFID-Lesegeräts erfolgen, und auch da nur im Nahbereich einiger Meter.

Technisch wird dies bei kurzer Reichweite des Signals und hinreichender Trennschärfe einer Pulklesung von RFID-Tags als Engpass-Lokalisierung oder i-Punkt-Lokalisierung (engl. choke point locating) bezeichnet. Ohne diese kurzzeitige Koinzidenz von Lesegerät und RFID-Tag (Kennzeichen) wären präzise Aussagen über Identität, Zeit und Ort nicht möglich.

Dynamische Lösungen (RTLS)[Bearbeiten]

Durch Weiterentwicklung der RFID-Technik zu RTLS Real-Time Locating System wären genäherte Ortungen möglich, wenn eine Distanzschätzung zwischen Sender und Empfänger(n) gelingt. Infrage kommen Methoden der Pegelmessung, der Fehlerbewertung oder der Laufzeitmessung. Die technische Anwendbarkeit wird aber durch den Störpegel anderer Sender, Mehrwegeausbreitung, Mehrfachreflexionen und die Dämpfung beim Durchgang durch dielektrische Massen stark eingeschränkt. Betriebliche Anwendungen sind bisher nur vereinzelt anzutreffen, andere Interessenlagen noch gering.

Personenortungsanlagen[Bearbeiten]

Für Personen gibt es aktive RFID-Transponder (Sendeanlagen, zumeist in Kleidung getragen oder eingenäht). In Verbindung mit der Infrastruktur einer Personenortungsanlage dienen sie dem Schutz gefährdeter Personen oder der Verbesserung von Prozessen, die von Personen ausgeführt werden.

Eine zeitweise Zuordnung eines gekennzeichneten Gegenstandes zu einer Person lokalisiert mangels Identifizierung der Person ebendiese noch nicht. Gegenteilige Beschreibungen gehören in die Kategorien der laienhaften Falschaussagen oder der intentionellen Falschdeutung.[3] Allein schon das Herstellen eines Zusammenhangs der Begriffe RFID und Ortsbestimmung ändert die durch die Physik bestimmten technischen Möglichkeiten nicht[4]. Hingegen wird der RFID-Technik eine Brisanz zugedeutet, die allein durch deren technische Leistung nicht begründet wird.

Radiofrequente aktive Sender lösen beispielsweise bei Verlassen von Pflegeeinrichtungen durch den Betreuten ein Signal aus. Es ist nicht bei allen Überwachungstechniken möglich, Sender unter die Haut einzubauen, da das Sendesignal teilweise durch den Wassergehalt der Haut geschwächt wird. Eine passive Personenüberwachung durch subkutan implantierte RFID-Chips ist jedoch möglich.[5]

Zulässigkeit[Bearbeiten]

Sämtliche Lösungen dieser Art bedürfen der Zustimmung der Beteiligten oder Betroffenen oder ihrer gesetzlichen Vertreter. Umstritten ist die Zulässigkeit der Ortung von Personen, die unter curativer oder rechtlicher Betreuung stehen. Das Abwägen von Schutz- und Kontrollinteressen gegenüber dem informationellen Selbstbestimmungsrecht ist am einfachsten durch willentliche Zustimmung des Trägers zu sichern. In allen anderen Fällen soll eine neutrale oder eine autorisierte Instanz die entsprechenden Entscheidungen fällen.

Die Auffassung der Vormundschaftsgerichte zur Zulässigkeit und Genehmigungsbedürftigkeit als freiheitsentziehende Maßnahme (§ 1906 BGB) ist unterschiedlich. Bejaht wurde diese Frage durch AG Hannover, BtPrax 1992, 113; AG Bielefeld, BtPrax 1996, 232; AG Stuttgart-Bad Cannstatt FamRZ 1997, 704. In einer neuen Entscheidung spricht sich das OLG Brandenburg gegen die Genehmigungspflicht des Senderchips als solchen aus; genehmigungspflichtig sei es, wenn klar sei, dass tatsächlich freiheitsbeschränkende Maßnahmen in der Einrichtung getroffen werden (OLG Brandenburg FamRZ 2006, 1481).

Die offene politische Diskussion zu diesem Thema hinkt in Deutschland weit hinter dem gesellschaftlichen Diskurs in Nachbarländern hinterher. In Österreich ist die Verwendung von kleinen Transpondern an allen Liftanlagen üblich. In den USA wird zunehmend jeder Patient im Krankenhaus mit einem Transponder gekennzeichnet. Die Vorteile zur Sicherheit für Betrieb, Behandlung und Rettung sind vielfältig.

Geräteortungsanlagen[Bearbeiten]

Es gibt Transponder (Sendeanlagen, zumeist versteckt angebracht) für Geräte. Diese funktionieren in Verbindung mit der Infrastruktur einer Geräteortungsanlage für den Diebstahlsschutz.

Die Sender lösen bei Entfernen beispielsweise von Geräten aus dem zulässigen Verwendungsbereich durch missbräuchlichen Transport (Diebstahl, unerlaubte Leihe, unbezahlter Kauf, sachfremde Verbringung) ein Signal aus. Es ist unmöglich, Sender unter Metalloberflächen einzubauen, da das Sendesignal durch die Metallschicht geschwächt wird.

Algorithmen zur Ortsbestimmung[Bearbeiten]

  • Proximity Sensing: Das Verfahren beruht auf der einfachen Idee mehrerer verteilter Empfänger, deren Positionen bekannt sind. Die Position des zu ortenden Objekts ist dann annähernd dieselbe, wie die Koordinaten der nächststehenden Empfangsantenne. Dieses Verfahren bildet die Grundlage der Positionierung aller Zellen-basierten Systeme, die standortbezogene Dienste anbieten, wie z. B. Mobilfunk, GSM und UMTS.
  • (zirkuläre/ hyperbolische) Trilateration: Approximation der Koordinaten des Zielobjekts durch Vergleich der Signallaufzeiten beim Endgerät, gegeben mehrere Sender. Im 2D-Raum benötigt man zur eindeutigen Positionsbestimmung 3 Signalgeber, im 3D-Raum sind mindestens vier Sender nötig, um die Position exakt berechnen zu können. Dieses Verfahren wird von Satellitennavigationssystemen wie GPS und Galileo eingesetzt.
  • Dead Reckoning (Koppelnavigation): Sind Anfangskoordinaten des eigenen Fahrzeugs (Schiff, Flugzeug) bekannt, kann mit Geschwindigkeit und Bewegungsrichtung (Kurs) die Position zu jedem Zeitpunkt ermittelt werden. Verwendung in Systemen mit mobilen Endgeräten, die permanent ihre Position ändern (Flugüberwachung, OBU2, GIS-Messfahrzeuge)
  • Komplexe geodätische Software:

Siehe auch[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. Information technology -- Automatic identification and data capture (AIDC) techniques -- Harmonized vocabulary -- Part 5: Locating systems
  2. Method to Generate Self-Organizing Processes in Autonomous Mechanisms and Organisms (PDF; 2,0 MB)
  3. Page 1 RFID, Radio Frequency Identification (PDF; 2,7 MB), Forum InformatikerInnen für Frieden und gesellschaftliche Verantwortung e. V., Seite 62
  4. CDT-Papier, Der Zweck dieser Richtlinien
  5. The Human Implantation of RFID Chips is Fatal to Freedom, www.fdrs.org