„Carl Friedrich Gauß“ – Versionsunterschied
[gesichtete Version] | [ungesichtete Version] |
K Bot: Ergänze: am:ጋውስ |
|||
Zeile 4: | Zeile 4: | ||
Seine überragenden wissenschaftlichen Leistungen waren schon seinen Zeitgenossen bewusst. Bereits 1856 ließ der König von Hannover Gedenkmünzen mit dem Bild von Gauß und der Inschrift ''Mathematicorum Principi'' ([[Lateinische Sprache|lateinisch]]: „dem Fürsten der Mathematiker“) prägen. Da Gauß nur einen Bruchteil seiner Entdeckungen veröffentlichte, erschloss sich der Nachwelt die Tiefgründigkeit und Reichweite seines Werks erst, als 1898 sein Tagebuch (siehe unten) entdeckt und ausgewertet wurde. |
Seine überragenden wissenschaftlichen Leistungen waren schon seinen Zeitgenossen bewusst. Bereits 1856 ließ der König von Hannover Gedenkmünzen mit dem Bild von Gauß und der Inschrift ''Mathematicorum Principi'' ([[Lateinische Sprache|lateinisch]]: „dem Fürsten der Mathematiker“) prägen. Da Gauß nur einen Bruchteil seiner Entdeckungen veröffentlichte, erschloss sich der Nachwelt die Tiefgründigkeit und Reichweite seines Werks erst, als 1898 sein Tagebuch (siehe unten) entdeckt und ausgewertet wurde. |
||
== Leben == |
|||
[[Datei:Braunschweig Brunswick Geburtshaus CF Gauss (1914).jpg|thumb|upright|Gauß’ Geburtshaus in der Wilhelmstraße 30; im Zweiten Weltkrieg vollständig zerstört]] |
|||
Carl Friedrich war das einzige Kind der Eheleute Gerhard Dietrich und Dorothea Gauß, geb. Benze. Die Mutter, eine nahezu [[Analphabetismus|analphabetische]], jedoch in hohem Grade intelligente Tochter eines armen [[Steinmetz]]en, arbeitete zunächst als [[Dienstbote|Dienstmädchen]], bevor sie die zweite Frau von Gerhard Dietrich Gauß wurde. Dieser hatte viele Berufe, er war unter anderem [[Gärtner]], [[Fleischer|Schlachter]], [[Maurer]], Kaufmannsassistent und [[Schatzmeister]] einer kleinen [[Versicherungsgesellschaft]]. [[Anekdote]]n besagen, dass bereits der dreijährige Carl Friedrich seinen Vater bei der Lohnabrechnung korrigierte. Später sagte er von sich selbst, er habe das Rechnen vor dem Sprechen gelernt. Sein Leben lang behielt er die Gabe, selbst komplizierteste Rechnungen im Kopf durchzuführen. |
|||
Im Alter von neun Jahren kam Gauß in die [[Volksschule]]. Dort stellte sein Lehrer Büttner seinen Schülern als Beschäftigung die Aufgabe, die Zahlen von 1 bis 100 zu summieren. Gauß hatte sie allerdings nach kürzester Zeit gelöst, indem er 50 Paare mit der [[Summe]] 101 bildete (1 + 100, 2 + 99, …, 50 + 51) und 5050 als Ergebnis erhielt. Die daraus resultierende Formel wird gelegentlich auch als „[[Gaußsche Summenformel|der kleine Gauß]]“ bezeichnet. |
|||
Dieses Ereignis ließ Gauß’ Lehrer seine außergewöhnliche mathematische Begabung erkennen, woraufhin er ein besonderes Rechenbuch aus Hamburg für ihn organisierte und unterstützt von seinem Assistenten [[Johann Christian Martin Bartels|Martin Bartels]] dafür sorgte, dass Gauß das [[Martino-Katharineum|Martino-Katharineum Gymnasium]] besuchen konnte. Als der Wunderknabe Gauß vierzehn Jahre alt war, wurde er dem Herzog [[Karl II. Wilhelm Ferdinand (Braunschweig-Wolfenbüttel)|Karl Wilhelm Ferdinand von Braunschweig]] bekannt gemacht. Dieser unterstützte ihn sodann finanziell und sorgte für seinen Lebensunterhalt. So konnte Gauß von 1792 bis 1795 am Collegium Carolinum studieren, das zwischen höherer Schule und Hochschule anzusiedeln ist und der Vorgänger der heutigen [[Technische Universität Braunschweig|Technischen Universität in Braunschweig]] ist. Dort war es der Professor [[Eberhard August Wilhelm von Zimmermann]], der sein mathematisches Talent erkannte, ihn förderte und ihm ein väterlicher Freund wurde. |
|||
[[Datei:Carl Friedrich Gauß signature.svg|thumb|upright|Verschnörkelter Namenszug des siebzehnjährigen Gauß]] |
|||
Im Oktober 1795 wechselte Gauß an die [[Georg-August-Universität Göttingen|Universität Göttingen]]. Dort hörte er bei [[Christian Gottlob Heyne]] Vorlesungen über klassische [[Philologie]], die ihn damals genauso wie die Mathematik interessierte. Letztere wurde durch [[Abraham Gotthelf Kästner]], der zugleich Dichter war, repräsentiert. Bei [[Georg Christoph Lichtenberg]] hörte er im Sommersemester 1796 [[Experimentalphysik]] und sehr wahrscheinlich im folgenden Wintersemester Astronomie. In Göttingen schloss er Freundschaft mit [[Wolfgang Bolyai]]. |
|||
Im Alter von neunzehn Jahren gelang es Gauß als Erstem, die [[Konstruktion (Mathematik)|Konstruierbarkeit]] des regelmäßigen [[Siebzehneck]]s zu beweisen – eine sensationelle Entdeckung, denn seit der Antike gab es auf diesem Gebiet kaum noch Fortschritte. Dies war mit ein Grund, sich gegen Sprachen und Philosophie und für das Studium der Mathematik zu entscheiden, das er 1799 mit seiner Doktorarbeit an der [[Academia Julia]] (Universität in [[Helmstedt]]) abschloss. Die Mathematik war hier durch [[Johann Friedrich Pfaff]] gut vertreten, und nicht zuletzt legte Gauß’ Gönner, der Herzog von Braunschweig, Wert darauf, dass Gauß nicht an einer „ausländischen“ Universität promovierte. |
|||
Nach seiner [[Promotion (Doktor)|Promotion]] lebte Gauß in Braunschweig von dem kleinen Gehalt, das ihm der Herzog zahlte, und arbeitete an seinem Werk ''[[Disquisitiones Arithmeticae]]''. |
|||
Einen Ruf an die Petersburger [[Russische Akademie der Wissenschaften|Akademie der Wissenschaften]] lehnte Gauß ab: nämlich aus Dankbarkeit gegenüber seinem Gönner, dem Herzog von Braunschweig, und wohl in der Hoffnung, dass dieser ihm eine Sternwarte in Braunschweig bauen würde. Nach dem plötzlichen Tod des Herzogs nach der [[Schlacht bei Jena und Auerstedt]] wurde Gauß im November 1807 Professor in [[Georg-August-Universität Göttingen|Göttingen]] und Direktor der dortigen [[Sternwarte Göttingen|Sternwarte]]. Dort musste er Lehrveranstaltungen halten, gegen die er aber eine Abneigung entwickelte. Trotzdem wurden mehrere seiner Studenten einflussreiche Mathematiker, darunter [[Richard Dedekind]] und [[Bernhard Riemann]]. |
|||
[[Datei:Therese Gauss.jpg|thumb|left|upright|Tochter Therese]] |
|||
Im November 1804 verlobte er sich mit Johanna Elisabeth Rosina Osthoff (* 1780; † 1809), der Tochter eines [[Gerben#Gerbverfahren|Weißgerbers]] aus Braunschweig, und heiratete sie am 9. Oktober 1805. Am 21. August 1806 wurde noch in Braunschweig das erste Kind geboren, Joseph, benannt nach [[Giuseppe Piazzi]], dem Entdecker des Zwergplaneten [[(1) Ceres|Ceres]]. In Göttingen folgte 1808 die Tochter Wilhelmine, die am 12. August 1840 starb, und am 11. Oktober 1809 Louis, bei dessen Geburt seine Frau Johanna starb. Louis selbst starb am 1. März 1810. Ein Jahr darauf, am 4. August 1810, erfolgte die Heirat mit Friederica „Minna“ Wilhelmine geb. Waldeck (* 1788; † 1831). Die Ehe war ebenfalls als glücklich zu bezeichnen,<ref>Mathematiker-Biographien [http://www.autoren-heute.de/wissenschaft/trans_html/Mathematiker/Gauss.html] (abgerufen am 15. Juli 2008)</ref> und die beiden hatten drei Kinder: Eugen (* 29. Juli 1811; † 1896), der die Rechte studierte und später nach Amerika auswanderte, um dort als Kaufmann zu leben, Wilhelm (* Oktober 1813; † 1883), der 1837 Eugen nachfolgte und ebenfalls nach Amerika auswanderte, um dort Landwirtschaft zu betreiben, und Therese (* Juni 1816; † 1864). Im Sommer 1818 begann Minna zu kränkeln, was sich später als [[Tuberkulose]] herausstellen sollte, und am 12. September 1831 verstarb sie. Von da an führte Tochter Therese den Haushalt. |
|||
[[Datei:Göttingen-Grave.of.Gauß.06.jpg|thumb|Grabstätte auf dem Albanifriedhof im Cheltenhampark, Göttingen]] |
|||
Gauß’ Vater starb am 14. April 1808 in Braunschweig. Am 18. April 1839 verstarb die Mutter im Alter von 95 Jahren in Göttingen. Gauß selbst starb am 23. Februar 1855 morgens um 1:05 Uhr in [[Göttingen]]. Heute liegt er dort auf dem [[Albani-Friedhof]] begraben, sein [[Gehirn]] jedoch wurde entnommen. Es wurde mehrfach mit verschiedenen Methoden, aber ohne besonderen Befund, der seine Rechenleistungen erklären würde, untersucht (zuletzt 1998).<ref>Wolfgang Hänicke, Jens Frahm und Axel D. Wittmann: ''Magnetresonanz-Tomografie des Gehirns von Carl Friedrich Gauß''. In: ''MPI News'' 5, Heft 12 (1999). [http://www.mpibpc.gwdg.de/inform/MpiNews/cientif/jahrg5/12.99/scta.html Online-Fassung] (abgerufen am 12. August 2006)</ref> Es befindet sich heute separat, in [[Formalin]] konserviert, in der ''Abteilung für Ethik und Geschichte der Medizin'' der Medizinischen Fakultät der [[Georg-August-Universität Göttingen|Universität Göttingen]]. Viele seiner Entdeckungen teilte er in Briefen Freunden mit oder notierte sie in seinen Tagebüchern, die erst 1898 entdeckt wurden. |
|||
In fortgeschrittenem Alter beschäftigte er sich zunehmend mit Literatur, nachdem er 1842 in die Friedensklasse des Ordens [[Pour le Mérite]] aufgenommen worden war und führte auch Listen über die Lebenserwartung berühmter Männer (in Tagen gerechnet). So schrieb er am 7. Dezember 1853 an seinen Freund und Kanzler seines Ordens [[Alexander von Humboldt]] u.a.: „Es ist übermorgen der Tag, wo Sie, mein hochverehrter Freund, in ein Gebiet übergehen, in welches noch keiner der Koryphäen der exacten Wissenschaften eingedrungen ist, der Tag, wo Sie dasselbe Alter erreichen, in welchem [[Isaac Newton|Newton]] seine durch 30766 Tage gemessene irdische Laufbahn geschlossen hat. Und Newtons Kräfte waren in diesem Stadium gänzlich erschöpft: Sie stehen zur höchsten Freude der ganzen wissenschaftlichen Welt noch im Vollgenuss Ihrer bewundernswürdigen Kraft da. Mögen Sie in diesem Genuss noch viele Jahre bleiben.“ <ref>Das Zitat findet sich in Brief Nr. 45 an [[Alexander von Humboldt]] vom 7. Dezember 1853, im Internet-Archiv: ''[http://www.archive.org/details/briefezwischena00gausgoog]'', ''[http://www.archive.org/details/briefezwischena01gausgoog]'', ''[http://www.archive.org/details/briefezwischena02gausgoog]'', ''[http://www.archive.org/details/briefezwischena03gausgoog])'',''[http://webdoc.sub.gwdg.de/ebook/e/gbs/gbs_30.pdf]'',''[http://193.170.41.202/lehrer/marek/downloads/mam/gauss_anek.pdf]'', S. 67–68, Karl Christian Bruhns (Hrsg.): Briefe zwischen A. v. Humboldt und Gauss, Wilhelm Engelmann, Leipzig 1877.</ref> |
|||
Gauß war sehr konservativ und monarchistisch eingestellt, die [[Revolution von 1848]] hieß er nicht gut. In Anlehnung an einen [[Platon]] zugeschriebenen Satz ({{ELSalt|Ὁ Θεὸς ἀεὶ γεωμέτρει}}, „Gott geometrisiert immer“)<ref>[[Plutarch]]: ''Moralia'', 718c: [http://www.archive.org/stream/moralia04plut#page/306/mode/2up], [http://www.archive.org/stream/moraliainfifteen09plutuoft#page/118/mode/2up]</ref> pflegte er {{ELSalt|Ὁ Θεὸς ἀριθμητίζει}} („Gott arithmetisiert“) zu sagen.<ref>Waltershausen: ''Gauss zum Gedächtniss'', 1856, S. 97: [http://books.google.de/books?id=h_Q5AAAAcAAJ&pg=PA97]</ref><ref>Brief von [[Wilhelm Baum (Chirurg)|Wilhelm Baum]] an [[Alexander von Humboldt]] vom 28. Mai 1855, abgedruckt in Bruhns (Hrsg.): ''Briefe zwischen A. v. Humboldt und Gauss'', 1877, S. 75: [http://www.archive.org/stream/briefezwischena00gausgoog#page/n84]</ref><ref>José Ferreirós: '' Ὁ Θεὸς Ἀριθμητίζει: The rise of pure mathematics as arithmetic with Gauss'' in [[Catherine Goldstein]], [[Norbert Schappacher]], [[Joachim Schwermer]] (Hrsg.): ''The shaping of arithmetic: after C. F. Gauss’s Disquisitiones Arithmeticae'', Springer, Berlin 2007, S. 234–268: [http://books.google.de/books?id=IUFTcOsMTysC&pg=PA234]</ref> |
|||
== Leistungen == |
== Leistungen == |
Version vom 4. November 2010, 10:48 Uhr
Johann Carl Friedrich Gauß (latinisiert Carolus Fridericus Gauss; * 30. April 1777 in Braunschweig; † 23. Februar 1855 in Göttingen) war ein deutscher Mathematiker, Astronom, Geodät und Physiker mit einem breit gefächerten Feld an Interessen.
Seine überragenden wissenschaftlichen Leistungen waren schon seinen Zeitgenossen bewusst. Bereits 1856 ließ der König von Hannover Gedenkmünzen mit dem Bild von Gauß und der Inschrift Mathematicorum Principi (lateinisch: „dem Fürsten der Mathematiker“) prägen. Da Gauß nur einen Bruchteil seiner Entdeckungen veröffentlichte, erschloss sich der Nachwelt die Tiefgründigkeit und Reichweite seines Werks erst, als 1898 sein Tagebuch (siehe unten) entdeckt und ausgewertet wurde.
Leistungen
Gauß misstraute bereits mit zwölf Jahren der Beweisführung in der elementaren Geometrie und ahnte mit sechzehn Jahren, dass es neben der euklidischen noch eine andere, nicht-euklidische Geometrie geben muss.
Mit achtzehn Jahren entdeckte er einige Eigenschaften der Primzahlverteilung und fand die Methode der kleinsten Quadrate, bei der es darum geht, die Summe der Quadrate von Abweichungen zu minimieren. Nach ihr lässt sich etwa das wahrscheinlichste Ergebnis für eine neue Messung aus einer genügend großen Zahl vorheriger Messungen ermitteln. Auf dieser Basis untersuchte er später Theorien zur Berechnung von Flächeninhalten unter Kurven (numerische Integration), die ihn zur gaußschen Glockenkurve gelangen ließen. Die zugehörige Funktion ist bekannt als die Dichte der Standardnormalverteilung und wird bei vielen Aufgaben zur Wahrscheinlichkeitsrechnung angewandt, wo sie die (asymptotische, das heißt für genügend große Datenmengen gültige) Verteilungsfunktion von zufällig um einen Mittelwert streuenden Daten ist. Gauß selbst machte davon unter anderem in seiner erfolgreichen Verwaltung der Witwen- und Waisenkasse der Göttinger Universität Gebrauch.
Als 19-Jähriger führte er 1796, bei Betrachtungen über die Bogenlänge auf einer Lemniskate in Abhängigkeit von der Entfernung des Kurvenpunktes zum Ursprung, mit den lemniskatischen Sinusfunktionen die historisch ersten, heute so genannten elliptischen Funktionen ein. Seine Notizen darüber hat er jedoch nie veröffentlicht. Diese Arbeiten stehen in Zusammenhang mit seiner Untersuchung des arithmetisch-geometrischen Mittels.
Gauß erfasste früh den Nutzen komplexer Zahlen, so auch in seiner Doktorarbeit von 1799, die einen strengeren Beweis des Fundamentalsatzes der Algebra enthält. Dieser Satz besagt, dass jede algebraische Gleichung mit Grad größer als null mindestens eine reelle oder komplexe Lösung besitzt. Den älteren Beweis von Jean Baptiste le Rond d’Alembert kritisierte Gauß als ungenügend, aber auch sein eigener Beweis erfüllt noch nicht die späteren Ansprüche an topologische Strenge.
Am 29. März 1796, wenige Wochen vor seinem neunzehnten Geburtstag, bewies er die Konstruierbarkeit des regelmäßigen Siebzehnecks und lieferte damit die erste nennenswerte Ergänzung euklidischer Konstruktionen seit 2000 Jahren. Dies war aber nur ein Nebenergebnis bei der Arbeit für sein zahlentheoretisch viel weiterreichendes Werk Disquisitiones Arithmeticae. Eine erste Ankündigung dieses Werkes fand sich am 1. Juni 1796 im Intelligenzblatt der allgemeinen Literatur-Zeitung in Jena. Die 1801 erschienenen Disquisitiones wurden grundlegend für die weitere Entwicklung der Zahlentheorie, zu der einer seiner Hauptbeiträge der Beweis des quadratischen Reziprozitätsgesetzes war, das die Lösbarkeit von quadratischen Gleichungen „mod p“ beschreibt und für das er im Laufe seines Lebens fast ein Dutzend verschiedene Beweise fand. Neben dem Aufbau der elementaren Zahlentheorie auf modularer Arithmetik findet sich auch eine Diskussion von Kettenbrüchen und der Kreisteilung, mit einer berühmten Andeutung über ähnliche Sätze bei der Lemniskate und anderen elliptischen Funktionen, die später Abel und andere anregten. Einen Großteil des Werks nimmt die Theorie der quadratischen Formen ein, deren Geschlechtertheorie er entwickelt. Es finden sich aber noch viele weitere tiefliegende Resultate, oft nur kurz angedeutet, in diesem Buch, die die Arbeit späterer Generationen von Zahlentheoretikern in vielfältiger Weise befruchteten. Der Zahlentheoretiker Peter Gustav Lejeune Dirichlet berichtete, er habe die Disquisitiones sein Leben lang bei der Arbeit stets griffbereit gehabt. Das gleiche gilt für die beiden Arbeiten über biquadratische Reziprozitätsgesetze von 1825 und 1831, in denen er auch die Gaußschen Zahlen einführt (ganzzahliges Gitter in komplexer Zahlenebene). Beweise für diese Gesetze gab erst Gotthold Eisenstein. Die Arbeiten sind wahrscheinlich Teil einer geplanten Fortsetzung der Disquisitiones, die aber nie erschien. André Weil regte die Lektüre dieser Arbeiten (und einiger Stellen im Tagebuch, wo es in versteckter Form um Lösung von Gleichungen über endlichen Körpern geht) nach seinen eigenen Angaben zu seinen Arbeiten über die Weil-Vermutungen an. Gauß kannte auch den Primzahlsatz, veröffentlichte ihn aber nicht.[1]
Nach der Fertigstellung der Disquisitiones wandte sich Gauß der Astronomie zu. Anlass hierfür war die Entdeckung des Zwergplaneten Ceres durch Giuseppe Piazzi am 1. Januar 1801, dessen Position man kurz nach seiner Entdeckung wieder verloren hatte. Der 24-jährige Gauß schaffte es, die Bahn mit Hilfe einer neuen indirekten Methode der Bahnbestimmung und seiner Ausgleichsrechnungen auf Basis der Methode der kleinsten Quadrate so zu berechnen, dass Heinrich Olbers ihn genau ein Jahr später, am 1. Januar 1802, wiederfinden konnte. Gauß beschäftigte sich danach auch noch mit der Bahn des Asteroiden Pallas, auf dessen Berechnung die Pariser Akademie ein Preisgeld ausgesetzt hatte, konnte die Lösung jedoch nicht finden. Seine Erfahrungen mit der Bahnbestimmung von Himmelskörpern mündeten in seinem Werk Theoria motus corporum coelestium in sectionibus conicis solem ambientium (Theorie der Bewegung der Himmelskörper, die in Kegelschnitten die Sonne umlaufen), das 1809 erschien. Diese Arbeiten machten Gauß mehr noch als seine Zahlentheorie in Europa mit einem Schlag bekannt.
In der Potentialtheorie und Physik ist der Gaußsche Integralsatz (1835, veröffentlicht erst 1867) grundlegend, der das Volumenintegral der Divergenz (Ableitungsvektor angewandt auf das Vektorfeld) eines Vektorfeldes mit dem Oberflächenintegral des Vektorfeldes um dieses Volumen herum in Beziehung setzt.
Um das Osterdatum für jedes beliebige Jahr rechnerisch ermitteln zu können, entwickelte er eine geschlossene Formel. Erstmals veröffentlicht wurde diese Berechnung in der von Franz Xaver von Zach herausgegebenen Zeitschrift Monatliche Correspondenz zur Beförderung der Erd- und Himmels-Kunde, Band 2, August 1800.[2] In dem Artikel Noch etwas über die Bestimmung des Osterfestes, veröffentlicht am 12. September 1807 im Braunschweigischen Magazin,[3] ging Gauß noch von einem Epaktensprung alle 300 Jahre aus. In der Zeitschrift für Astronomie und verwandte Wissenschaften, Band 1, wurde 1816 der Artikel Berichtigung zu dem Aufsatze: Berechnung des Osterfestes veröffentlicht, in dem Gauß eine Ergänzung seiner gaußschen Osterformel vornimmt, die den Epaktensprung alle 312,5 Jahre vorsieht.[4]
Auf dem Gebiet der Geodäsie sammelte Gauß zwischen 1797 und 1801 die ersten Erfahrungen, als er dem französischen Generalquartiermeister Lecoq bei dessen Landesvermessung des Herzogtums Westfalen als Berater zur Seite stand. Zum zweiten Mal kam er 1816 damit in Berührung, als ihn der König von Dänemark mit der Durchführung einer Breiten- und Längengradmessung in dänischem Gebiet beauftragte. Nach abschließenden Verhandlungen leitete Gauß dann zwischen 1818 und 1826 die Landesvermessung des Königreichs Hannover („gaußsche Landesaufnahme“). Durch die von ihm erfundene Methode der kleinsten Quadrate und die systematische Lösung umfangreicher linearer Gleichungssysteme (gaußsches Eliminationsverfahren) gelang ihm eine erhebliche Steigerung der Genauigkeit. Auch für die praktische Durchführung interessierte er sich: Er erfand als Messinstrument das über Sonnenspiegel beleuchtete Heliotrop.
In diesen Jahren beschäftigte er sich – angeregt durch die Geodäsie und die Karten-Theorie – auch mit der Theorie der Differentialgeometrie der Flächen und führte unter anderem die gaußsche Krümmung ein und bewies sein Theorema egregium, das die Winkelsumme in Dreiecken mit der Krümmung in Beziehung setzt. Es zeigt, dass die Krümmung durch lokale Größen gegeben ist und nicht von der Einbettung der Fläche in den dreidimensionalen Raum abhängt, also auch bei Abbildungen von Flächen aufeinander wie in der Kartenprojektion erhalten bleibt.
Unabhängig von János Bolyai und Nikolai Iwanowitsch Lobatschewski bemerkte er, dass das Euklidische Parallelenaxiom nicht denknotwendig ist. Seine Gedanken zur nichteuklidischen Geometrie veröffentlichte er jedoch nicht, vermutlich aus Furcht vor dem Unverständnis der Zeitgenossen. Als ihm sein Studienfreund Wolfgang Bolyai, mit dem er korrespondierte, allerdings von den Arbeiten seines Sohnes János Bolyai berichtet, lobt er ihn zwar, kann es sich aber nicht verkneifen zu erwähnen, dass er selbst schon sehr viel früher darauf gekommen war („[die Arbeit Deines Sohnes] loben hiesse mich selbst loben“).[5] Er habe darüber nichts veröffentlicht, da er „das Geschrei der Böotier scheue“.[6] Lobatschewskis Arbeiten fand Gauß so interessant, dass er noch in fortgeschrittenem Alter russisch lernte, um sie zu studieren.
Der allgemeinen Relativitätstheorie zufolge ist der Raum in kosmologischem Maßstab möglicherweise „nicht-euklidisch“ (und die Raum-Zeit sowieso, selbst der beschleunigte Fall eines Apfels wird in ihr durch deren Krümmung beschrieben, verursacht durch die Masse der Erde), das heißt gekrümmt, ähnlich wie die Oberfläche der Erde. Wolfgang Sartorius von Waltershausen berichtet,[7] Gauß habe bei Gelegenheit der Hannoverschen Landesvermessung empirisch nach einer Abweichung der Winkelsumme besonders großer Dreiecke vom Euklidischen Wert von 180° gesucht. Wie etwa bei dem Dreieck, das vom Brocken im Harz, dem Inselsberg im Thüringer Wald und dem Hohen Hagen bei Dransfeld gebildet wird. Seitenlängen: Brocken – 68 km – Hoher Hagen – 84 km – Inselberg – 106 km – Brocken. Die Vermessung durch Gauß ist belegt, die oben erwähnte Vermutung zur Motivation ist dagegen unsicher.[8] Max Jammer schrieb über das Ergebnis dieser gaußschen Messung: „Es braucht kaum eigens gesagt zu werden, daß er innerhalb der Fehlergrenze keine Abweichung von 180° entdeckte und daraus den Schluß zog, die Struktur des wirklichen Raumes sei, soweit die Erfahrung darüber eine Aussage erlaubt, Euklidisch.“[9]
Zusammen mit Wilhelm Eduard Weber arbeitete er ab 1831 auf dem Gebiet des Magnetismus. Gauß erfand das Magnetometer und verband so 1833 seine Sternwarte mit dem physikalischen Institut. Dabei tauschte er über elektromagnetisch beeinflusste Kompassnadeln Nachrichten mit Weber aus; die erste (elektromagnetische) Telegrafenverbindung auf der Welt. Mit ihm zusammen entwickelte er auch das cgs-Einheitensystem, das später, 1881, auf einem internationalen Kongress in Paris zur Grundlage der elektrotechnischen Maßeinheiten bestimmt wurde. Gauß fand auch unabhängig die Kirchhoffschen Regeln für Stromkreise. Er organisierte ein weltweites Netz von Beobachtungsstationen (Magnetischer Verein), um das erdmagnetische Feld zu vermessen.
Gauß arbeitete auf vielen Gebieten, veröffentlichte seine Ergebnisse jedoch erst, wenn eine Theorie seiner Meinung nach komplett war. Dies führte dazu, dass er Kollegen gelegentlich darauf hinwies, dieses oder jenes Resultat schon lange bewiesen zu haben, es wegen der Unvollständigkeit der zugrundeliegenden Theorie oder der ihm zum schnellen Arbeiten fehlenden nötigen Heiterkeit nur noch nicht präsentiert zu haben. Kritiker warfen ihm vor, dass dies Ausdruck einer übertriebenen Geltungssucht war. Bezeichnenderweise besaß er ein Petschaft, das einen von wenigen Früchten behangenen Baum und das Motto Pauca sed matura (Weniges, aber Reifes) zeigte.
Tatsache ist, dass er ein intensiver Tagebuchschreiber war und dort auch viele seiner Resultate notierte. Nach seinem Tod wurden über zwanzig dieser Bände gefunden. So konnte belegt werden, dass er einen Großteil seiner behaupteten Leistungen tatsächlich erbracht hat. Es wird angenommen, dass nicht alle seiner Tagebücher erhalten sind.
Gauß als Namensgeber
Von Gauß entwickelte Methoden oder Ideen, die seinen Namen tragen, sind:
- das gaußsche Eliminationsverfahren zur Diagonalisierung und Invertierung von Matrizen und damit zur Lösung von linearen Gleichungssystemen
- das gaußsche Fehlerfortpflanzungsgesetz
- das gaußsche Fehlerintegral
- der gaußsche Integralsatz, auch Satz von Gauß-Ostrogradski oder Divergenzsatz genannt, in der Vektoranalysis
- das gaußsche Gesetz in der Elektrostatik
- die gaußsche Krümmung in der Differentialgeometrie
- die gaußsche Osterformel, zur Berechnung des Osterdatums
- die gaußsche Wochentagsformel, zur Berechnung eines Wochentages anhand eines Datums
- die gaußsche Trapezformel, zur Berechnung einer Fläche aus Koordinaten durch Zerlegung in Dreiecke bzw. Trapeze
- das gaußsche Prinzip des kleinsten Zwanges in der Mechanik
- die gaußschen Quadraturformeln, numerisches Integrations-Verfahren (siehe auch Gauß-Quadratur)
- die Stützpunkte bei der Gauß-Quadratur (z. B. Gauß-Legendre-Integration) heißen Gaußpunkte
- die gaußsche Normalverteilung, auch gaußsche Glockenkurve genannt (die Glockenkurve schmückte, neben dem Portrait von Carl Friedrich Gauß platziert, von 1989 bis 2001 die letzte 10-DM-Banknote der Bundesrepublik Deutschland)
- die gaußschen Zahlen, eine Erweiterung der ganzen Zahlen auf die komplexen Zahlen
- die gaußsche Zahlenebene als geometrische Deutung der Menge der komplexen Zahlen
- die Gaußklammer, eine Funktion, die Zahlen auf die nächstkleinere ganze Zahl abrundet
- der Gauß-Prozess, ein stochastischer Prozess
- das Lemma von Gauß, ein Schritt in einem seiner Beweise des quadratischen Reziprozitätsgesetzes
- Der kleine Gauß: Addition einer Reihe (gaußsche Summenformel)
- die Gaußsche Summe, bestimmter Typ einer endlichen Summe der Einheitswurzel
Methoden und Ideen, die teilweise auf seinen Arbeiten beruhen, sind:
- der Satz von Gauß-Bonnet in der Differentialgeometrie
- das Gauß-Elling-Verfahren, ein Verfahren zur Flächenberechnung nach Koordinaten
- der Gauß-Jordan-Algorithmus, eine Weiterentwicklung des gaußschen Eliminationsverfahrens
- das Gauß-Krüger-Koordinatensystem und die Gauß-Krüger-Projektion
- das Gauß-Markow-Theorem über die Existenz eines BLUE-Schätzers in linearen Modellen
- die gaußsche Optik, eine mathematische Beschreibung der Ausbreitung von Laserlicht
- das Gauß-Newton-Verfahren, ein Verfahren zur Lösung nichtlinearer Gleichungen
- das Gauß-Seidel-Verfahren, ein Verfahren zur Lösung von linearen Gleichungssystemen
- die Gauß-Laplace-Pyramide, auch Burt-Adelson-Pyramiden oder Gauß- und Laplacepyramide
- das Gaußgewehr, Geschütz, das ein ferromagnetisches Projektil mittels (Elektro-)Magneten beschleunigt, ähnlich Linearmotor
Zu seinen Ehren benannt sind:
- Wissenschaft und Technik
- das Gauß, die veraltete cgs-Einheit der magnetischen Flussdichte im gaußschen Einheitensystem
- das Gaußsche Einheitensystem
- die Gaußsche Gravitationskonstante
- mehrere Forschungsschiffe, siehe Gauß (1901) und Gauss (1980)
- der Gauß-Lehrstuhl an der Georg-August-Universität Göttingen
- die Carl-Friedrich-Gauß-Fakultät für Mathematik, Informatik, Wirtschafts- und Sozialwissenschaften der TU Braunschweig
- Natur
- der Gaußberg im Kaiser-Wilhelm-II.-Land in der Antarktis
- der Mondkrater Gauß
- der Asteroid (1001) Gaussia
- Gebäude
- der Gaußturm auf dem Hohen Hagen bei Dransfeld
- ca. zehn Schulen in Deutschland und weitere weltweit
- das Gauß IT Zentrum der TU Braunschweig
- Software
- Ehrungen
- die Carl-Friedrich-Gauß-Medaille der Braunschweigischen Wissenschaftlichen Gesellschaft
- die Gauß-Medaille in verschiedenen Ausführungen von 1977 der Akademie der Wissenschaften der DDR, die an verdiente Wissenschaftler verliehen wurde
- die festliche Gauß-Vorlesung der Deutschen Mathematiker-Vereinigung zu Facetten der Mathematik aus historischer und aktueller Perspektive (einmal pro Semester seit 2001 an wechselndem Ort)[10]
Schriften
- Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse (Neuer Beweis des Satzes, dass jede algebraische rationale ganze Funktion einer Veränderlichen in reelle Faktoren des ersten oder zweiten Grades zerlegt werden kann), C. G. Fleckeisen, Helmstadii (Helmstedt) 1799 (lateinisch; Doktorarbeit über den Fundamentalsatz der Algebra; bei der HU Berlin: [6]; auch in Gauß: Werke. Band 3, S. 3–30: [7], [8], [9])
- Disquisitiones Arithmeticae (Arithmetische Untersuchungen), Gerhard Fleischer jun., Lipsiae (Leipzig) 1801 (lateinisch; auch Gauß: Werke. Band 1, zweiter Abdruck: [10])
- Theoria motus corporum coelestium in sectionibus conicis solem ambientium (Theorie der Bewegung der Himmelskörper, die in Kegelschnitten die Sonne umlaufen), F. Perthes und I. H. Besser, Hamburgi (Hamburg) 1809 (lateinisch; auch in Gauß: Werke. Band 7, S. 1–261)
- Disquisitiones generales circa seriem infinitam etc. Pars I (Allgemeine Untersuchungen über die unendliche Reihe 1+… Teil I; 30. Januar 1812), Commentationes Societatis Regiae Scientiarum Gottingensis recentiores 2 (classis mathematicae), 1813, S. 3–46 (lateinisch; auch in Gauß: Werke. Band 3, S. 123–162: [11], [12], [13])
- Theoria combinationis observationum erroribus minimis obnoxiae (Theorie der den kleinsten Fehlern unterworfenen Kombination der Beobachtungen), Commentationes Societatis Regiae Scientiarum Gottingensis recentiores 5 (classis mathematicae), 1823, und Dieterich, Gottingae (Göttingen) 1823 (lateinisch; bei Google Books: [14])
- Pars prior (Erster Teil; 15. Februar 1821), S. 33–62 (auch in Gauß: Werke. Band 4, S. 3–26)
- Pars posterior (Zweiter Teil; 2. Februar 1823), S. 63–90 (auch in Gauß: Werke. Band 4, S. 27–53)
- Supplementum theoriae combinationis observationum erroribus minimis obnoxiae (Ergänzung zur Theorie der den kleinsten Fehlern unterworfenen Kombination der Beobachtungen; 16. September 1826), Commentationes Societatis Regiae Scientiarum Gottingensis recentiores 6 (classis mathematicae), 1828, S. 57–98 (lateinisch; auch in Gauß: Werke. Band 4, S. 55–93)
- Disquisitiones generales circa superficies curvas (Allgemeine Untersuchungen über gekrümmte Flächen; 8. Oktober 1827), Commentationes Societatis Regiae Scientiarum Gottingensis recentiores 6 (classis mathematicae), 1828, S. 99–146, und Dieterich, Gottingae (Göttingen) 1828 (lateinisch, mit dem Theorema egregium auf S. 120 oder S. 24; bei Google Books: [15]; auch in Gauß: Werke. Band 4, S. 219–258)
- Principia generalia theoriae figurae fluidorum in statu aequilibrii (Allgemeine Grundlagen einer Theorie der Gestalt von Flüssigkeiten im Zustand des Gleichgewichts; 28. September 1829), Commentationes Societatis Regiae Scientiarum Gottingensis recentiores 7 (classis mathematicae), 1832, S. 39–88, und Dieterich, Gottingae (Göttingen) 1830 (lateinisch; bei Google Books: [16]; auch in Gauß: Werke. Band 5, S. 31–77: [17])
- mit Wilhelm Weber (Hrsg.): Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1836–1841, Weidmannsche Buchhandlung, Leipzig 1837–1843 (bei Google Books: 1836–1838, 1839–1841)
- mit Wilhelm Weber (Hrsg.): Atlas des Erdmagnetismus. Nach den Elementen der Theorie entworfen, Weidmann’sche Buchhandlung, Leipzig 1840 (bei Google Books: [18]; auch in Gauß: Werke. Band 12, S. 335–408)
- Dioptrische Untersuchungen (10. Dezember 1840), Abhandlungen der Mathematischen Classe der Königlichen Gesellschaft der Wissenschaften zu Göttingen 1, 1843, S. 1–34 (bei Google Books: [19]), und Dieterich, Göttingen 1841 (bei Gallica: [20]; auch in Gauß: Werke. Band 5, S. 245–276: [21])
- Untersuchungen über Gegenstände der höhern Geodaesie. Erste Abhandlung (23. Oktober 1843), Abhandlungen der Mathematischen Classe der Königlichen Gesellschaft der Wissenschaften in Göttingen 2, 1845, S. 3–34 (auch in Gauß: Werke. Band 4, S. 261–290)
- Untersuchungen über Gegenstände der höhern Geodäsie. Zweite Abhandlung (1. September 1846), Abhandlungen der Mathematischen Classe der Königlichen Gesellschaft der Wissenschaften in Göttingen 3, 1847, S. 3–35 (auch in Gauß: Werke. Band 4, S. 303–334)
Briefwechsel und Tagebuch
- Christian August Friedrich Peters (Hrsg.): Briefwechsel zwischen C. F. Gauss und H. C. Schumacher, Gustav Esch, Altona 1860–1865 (bei Google Books: Band 1, 1+2, 2, 3+4, 3+4, 5+6)
- Karl Christian Bruhns (Hrsg.): Briefe zwischen A. v. Humboldt und Gauss, Wilhelm Engelmann, Leipzig 1877 (im Internet-Archiv: [22], [23], [24], [25])
- Arthur Auwers (Hrsg.): Briefwechsel zwischen Gauss und Bessel, Wilhelm Engelmann, Leipzig 1880 (im Internet-Archiv: [26])
- Franz Schmidt, Paul Stäckel (Hrsg.): Briefwechsel zwischen Carl Friedrich Gauss und Wolfgang Bolyai, B. G. Teubner, Leipzig 1899 (bei der University of Michigan: [27]; im Internet-Archiv: [28])
- Carl Schilling (Hrsg.): Wilhelm Olbers: Sein Leben und seine Werke. Zweiter Band: Briefwechsel zwischen Olbers und Gauss, Julius Springer, Berlin 1900 1909 (im Internet-Archiv: Abtheilung 1, 2, 2)
- Clemens Schaefer (Hrsg.): Briefwechsel zwischen Carl Friedrich Gauß und Christian Ludwig Gerling, Otto Elsner, Berlin 1927
- Mathematisches Tagebuch 1796–1814 (5. Auflage), Harri-Deutsch-Verlag, Frankfurt am Main 2005, ISBN 3-8171-3402-9 (mit Anmerkungen von Hans Wußing und Olaf Neumann)
- Jeremy Gray: A commentary on Gauss’s mathematical diary, 1796–1814, Expositiones Mathematicae 2, 1984, S. 97–130 (englisch)
Gesamtausgabe
- Carl Friedrich Gauß: Werke, herausgegeben von der (Königlichen) Gesellschaft der Wissenschaften zu Göttingen
- Band 1 bis 6, Dieterich, Göttingen 1863–1874 (bei Google Books: Band 2, 3, 3, 3, 5; im Internet-Archiv: Band 4, 4, 6), zweiter Abdruck 1870–1880 (im Internet-Archiv: Band 1, 2, 2, 3, 3, 4, 5, 5)
- Band 7 bis 12, B. G. Teubner, Leipzig 1900–1917, Julius Springer, Berlin 1922–1933 (im Internet-Archiv: Band 7, 9, 10.2(1+5), 10.2(4))
In den Bänden 10 und 11 finden sich ausführliche Kommentare von Paul Bachmann (Zahlentheorie), Ludwig Schlesinger (Funktionentheorie), Alexander Ostrowski (Algebra), Paul Stäckel (Geometrie), Oskar Bolza (Variationsrechnung), Philipp Maennchen (Gauß als Rechner), Harald Geppert (Mechanik, Potentialtheorie), Andreas Galle (Geodäsie), Clemens Schaefer (Physik) und Martin Brendel (Astronomie). Herausgeber war zuerst Ernst Schering, dann Felix Klein.
Übersetzungen
- Recherches générales sur les surfaces courbes, Bachelier, Paris 1852 (französische Übersetzung von Disquisitiones generales circa superficies curvas, 1828; bei Gallica: [29])
- Méthode des moindres carrés, Mallet-Bachelier, Paris 1855 (französische Übersetzung von Theoria combinationis observationum erroribus minimis obnoxiae, 1823/1828, und weiteren von Joseph Bertrand; bei Google Books: [30], [31])
- Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections, Little, Brown and Company, Boston 1857 (englische Übersetzung von Theoria motus corporum coelestium in sectionibus conicis solem ambientium, 1809, von Charles Henry Davis; bei Google Books: [32], [33]; im Internet-Archiv: [34], [35], [36])
- Carl Haase (Hrsg.): Theorie der Bewegung der Himmelskörper welche in Kegelschnitten die Sonne umlaufen, Carl Meyer, Hannover 1865 (deutsche Übersetzung von Theoria motus corporum coelestium in sectionibus conicis solem ambientium, 1809, von Carl Haase; bei Google Books: [37]); Faksimile-Reprint Verlag Kessel, 2009, ISBN 978-3-941300-13-2
- Anton Börsch, Paul Simon (Hrsg.): Abhandlungen zur Methode der kleinsten Quadrate von Carl Friedrich Gauss, P. Stankiewicz, Berlin 1887 (deutsche Übersetzung von Theoria combinationis observationum erroribus minimis obnoxiae, 1823/1828, und weiteren; im Internet-Archiv: [38])
- Heinrich Simon (Hrsg.): Allgemeine Untersuchungen über die unendliche Reihe u.s.w., Julius Springer, Berlin 1888 (deutsche Übersetzung von Disquisitiones generales circa seriem infinitam 1+…, 1813, von Heinrich Simon; im Internet-Archiv: [39])
- Hermann Maser (Hrsg.): Carl Friedrich Gauss’ Untersuchungen über höhere Arithmetik, Julius Springer, Berlin 1889 (deutsche Übersetzung von Disquisitiones Arithmeticae, 1801; im Internet-Archiv: [40]); Faksimile-Reprint Verlag Kessel, 2009, ISBN 978-3-941300-09-5.
- Albert Wangerin (Hrsg.): Allgemeine Flächentheorie (Disquisitiones generales circa superficies curvas), Wilhelm Engelmann, Leipzig 1889 (deutsche Übersetzung; bei der University of Michigan: [41]; im Internet-Archiv: [42], [43])
- Eugen Netto (Hrsg.): Die vier Gauss’schen Beweise für die Zerlegung ganzer algebraischer Funktionen in reelle Factoren ersten oder zweiten Grades (1799–1849), Wilhelm Engelmann, Leipzig 1890 (deutsche Übersetzung; bei der University of Michigan: [44]; im Internet-Archiv: [45], [46], [47])
- Eugen Netto (Hrsg.): Sechs Beweise des Fundamentaltheorems über quadratische Reste von Carl Friedrich Gauss, Wilhelm Engelmann, Leipzig 1901 (deutsche Übersetzung mit Anmerkungen; bei der University of Michigan: [48]; im Internet-Archiv: [49], [50], [51], [52])
- General investigations of curved surfaces of 1827 and 1825, The Princeton University Library, 1902 (englische Übersetzung von Disquisitiones generales circa superficies curvas, 1828, und Neue allgemeine Untersuchungen über die krummen Flächen, 1901, von James Caddall Morehead und Adam Miller Hiltebeitel; bei der University of Michigan: [53]; im Internet-Archiv: [54], [55])
- Heinrich Weber (Hrsg.): Allgemeine Grundlagen einer Theorie der Gestalt von Flüssigkeiten im Zustand des Gleichgewichts, Wilhelm Engelmann, Leipzig 1903 (deutsche Übersetzung von Principia generalia theoriae figurae fluidorum in statu aequilibrii, 1830, von Rudolf Heinrich Weber; im Internet-Archiv: [56], [57])
Kartenwerke
- August Papen: Topographischer Atlas des Königreichs Hannover und Herzogthums Braunschweig, nach einem Maasstabe von 1/100.000 der wahren Länge, auf den Grund der von dem Geheimen Hofrath Gauss geleiteten vollständigen Triangulirung, aus den grossen topographischen Landes Aufnahmen und mehreren anderen Vermessungen reducirt und bearbeitet von A. Papen, Hannover 1832–1847.
Denkmäler
- Statue für Braunschweig (Inselwall/Schubertstraße), 1880, nach Entwurf von Fritz Schaper, ausgeführt von Hermann Heinrich Howaldt.
- Gauß-Weber-Denkmal in Göttingen, das Gauß zusammen mit Wilhelm Weber zeigt.
- Drei Göttinger Gedenktafeln.
- Gauß-Denkmal in Berlin (Kriegsverlust, nicht erneuert)
- Auf der „10 DM“-Banknote der vierten Serie der Deutschen Mark ist eine Abbildung Gauß’ zusammen mit einer Darstellung der Glockenkurve und wichtiger Gebäude Göttingens zu finden. An ihn erinnern ebenso zwei Sondermünzen, die 1977 aus Anlass seines 200. Geburtstages in der Bundesrepublik Deutschland (5 DM) und in der DDR (20 M) herausgegeben wurden.
- In Deutschland erinnern drei Briefmarken an Gauß: 1955 gab die Deutsche Bundespost aus Anlass seines 100. Todestages eine 10-Pf-Briefmarke heraus; 1977 erinnerte die DDR mit einer 20-Pf-Briefmarke an den 200. Geburtstag, ebenso die Deutsche Bundespost mit einer 40-Pf-Briefmarke
- Gedenktafel am Standort des Geburtshauses Wilhelmstraße 30 in Braunschweig.
- Gaußstein oberhalb der Ruine von Burg Lichtenberg bei Salzgitter-Lichtenberg
- Am 12. September 2007 wurde eine von Georg Arfmann geschaffene Gauß-Büste in der Gedenkstätte Walhalla enthüllt.[11]
Bildnisse
Von Gauß gibt es relativ viele Bildnisse, unter anderem:
- 17?? Silhouette aus den Jugendjahren
- 1803 Portrait (Ölgemälde) von Johann Christian August Schwarz (1755/56–1814)[12]
- 1810 Büste von Friedrich Künkler
- 18?? Zeichnung von Johann Benedict Listing (1808–1882)
- 1828 Lithographie von Siegfried Detlev Bendixen (1786–1864)
- 1840 Ölgemälde des dänischen Malers Christian Albrecht Jensen. Ort: Sternwarte Pulkowa in St. Petersburg
- 18?? Lithographie von Eduard Ritmüller (1805–1869) Gauss auf der Terrasse der Göttinger Sternwarte
- 1850 Altersbildnis 1 (Stahlstich?)
- 1854 Altersbildnis 2 (Stahlstich?)
- 1855 Daguerreotypie auf dem Totenbett von Philipp Petri (1800–1868)
- 1887 Kopie des Portraits von Jensen (1840) von Gottlieb Biermann. Ort: Hörsaal der Göttinger Sternwarte
Literatur
- Wolfgang Sartorius von Waltershausen: Gauss zum Gedächtniss, S. Hirzel, Leipzig 1856 (bei Google Books: [58])
- Moritz Cantor: Gauß: Karl Friedrich G. In: Allgemeine Deutsche Biographie (ADB). Band 8, Duncker & Humblot, Leipzig 1878, S. 430–445.
- Felix Klein: Gauß, erstes Kapitel der Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, Julius Springer, Berlin 1926, S. 6–62 (Reprint: Springer-Verlag, Berlin Heidelberg New York 1979, ISBN 3-540-09234-X)
- Ludwig Bieberbach: Carl Friedrich Gauß. Ein deutsches Gelehrtenleben, Keil-Verlag, Berlin 1938
- Wilhelm Blaschke: Über die Differenzialgeometrie von Gauß, Jahresbericht der DMV 52, 1942, S. 61–71
- Waldo Dunnington, Jeremy Gray, Fritz-Egbert Dohse: Gauß – Titan of Science. The Mathematical Association of America, 2004. (Engl.) ISBN 978-0-88385-547-8 (Ursprünglich von Dunnington 1955 veröffentlicht. Dunnington trug viel Material zusammen)
- Hans Reichardt (Hrsg.): C. F. Gauß: Gedenkband anläßlich des 100. Todestages am 23. Februar 1955, B. G. Teubner, Leipzig 1957 (mit Beiträgen von Kähler, H. Salié, Georg-Johann Rieger, Kochendörffer, Blaschke, Klingenberg, Markuschewitsch, K. Schröder, Gnedenko und Falkenhagen)
- Nikolai Stuloff: Gauß. Carl Friedrich. In: Neue Deutsche Biographie (NDB). Band 6, Duncker & Humblot, Berlin 1964, ISBN 3-428-00187-7, S. 101–107 (Digitalisat).
- Mitteilungen der Gauß-Gesellschaft, Göttingen, seit 1964, Inhaltsverzeichnis
- Kenneth May: Gauß, Dictionary of Scientific Biography Band 5, 1972
- Hans Wußing: Carl Friedrich Gauß, Biographien hervorragender Naturwissenschaftler, Techniker und Mediziner Band 15, BSB B. G. Teubner Verlagsgesellschaft 1. Auflage 1973, 5. Aufl. 1989, ISBN 3-322-00682-4
- Heinrich Rubner (Hrsg.), Rudolf Wagner, Carl Friedrich Gauß et al.: Gespräche mit Carl Friedrich Gauß in den letzten Monaten seines Lebens. Nachrichten der Akademie der Wissenschaften in Göttingen, Philologisch-Historische Klasse, Jahrgang 1975, Nr. 6. Vandenhoeck und Ruprecht, Göttingen 1975
- Karin Reich: Gauß 1777–1977, Moos, München 1977
- Walter Kaufmann-Bühler: Gauß – eine biographische Studie, Springer-Verlag, 1987
- Kurt-R. Biermann (Hrsg.): Gauß in Gesprächen und Briefen, Urania Verlag und Beck Verlag, 1990
- Hubert Mania: Gauß. Eine Biografie, Rowohlt, Reinbek bei Hamburg, 2008, ISBN 3-498-04506-7 (rororo-Taschenbuch 62531; Rowohlt, Reinbek bei Hamburg, 2009; ISBN 3-499-62531-8)
Belletristik:
- Daniel Kehlmann: Die Vermessung der Welt (Roman), Rowohlt, Reinbek bei Hamburg 2005, ISBN 3-498-03528-2
Weblinks
- Literatur von und über Carl Friedrich Gauß im Katalog der Deutschen Nationalbibliothek
- Biographie an der Universität Göttingen
- Gauß und Nachkommen (englisch)
Einzelnachweise
- ↑ Er findet sich in einem Brief an Johann Franz Encke vom 24. Dezember 1849, abgedruckt in Gauß: Werke. Band 2, S. 444–447 (Online in der Google-Buchsuche).
- ↑ Nachgedruckt in Gauß: Werke. Band 6, S. 73–79
- ↑ Nachgedruckt in Gauß: Werke. Band 6, S. 82–86
- ↑ Nachgedruckt in Gauß: Werke. Band 11.1, S. 201
- ↑ Brief an Wolfgang von Bolyai vom 6. März 1832, Auszug in Gauß: Werke. Band 8, S. 220–224, vollständig in Schmidt, Stäckel (Hrsg.): Briefwechsel zwischen Carl Friedrich Gauss und Wolfgang Bolyai, 1899, S. 108–113 (bei der University of Michigan: [1]; im Internet-Archiv: [2])
- ↑ Brief an Friedrich Wilhelm Bessel vom 27. Januar 1829, Auszug in Gauß: Werke. Band 8, S. 200, vollständig in Auwers (Hrsg.): Briefwechsel zwischen Gauss und Bessel, 1880, S. 487–490 (im Internet-Archiv: [3]). „Böotier“ ist sprichwörtlich für „ländlich grobes, ungebildetes Volk“, siehe Böotien
- ↑ Sartorius von Waltershausen: Gauss zum Gedächtniss, 1856 (bei Google Books: [4])
- ↑ Erhard Scholz hält es für durchaus möglich, dass Gauß daran dachte, sein preprint ist hier: [5]. Gauss selber äußert sich in einem Brief an Olbers vom 1. März 1827, zitiert bei Bühler S. 97, dahingehend, dass die Messfehler für ein solches Feststellen von Abweichungen zu groß seien.
- ↑ Max Jammer: Das Problem des Raumes, Darmstadt 1960, S. 164
- ↑ Archiv der Gauß-Vorlesungen bei der Deutschen Mathematiker-Vereinigung
- ↑ Gauß-Büste in der Walhalla aufgestellt. Pressemitteilung der Stadt Göttingen vom 12. September 2007
- ↑ A. Wietzke: Das wieder aufgefundene Jugendbild von Carl Friedrich Gauß, Jahresbericht der DMV 41 (Angelegenheiten), 1932, S. 1–2
Personendaten | |
---|---|
NAME | Gauß, Carl Friedrich |
ALTERNATIVNAMEN | Gauß, Johann Carl Friedrich; Gauss, Carolus Fridericus (latinisiert) |
KURZBESCHREIBUNG | deutscher Mathematiker, Astronom, Geodät und Physiker |
GEBURTSDATUM | 30. April 1777 |
GEBURTSORT | Braunschweig |
STERBEDATUM | 23. Februar 1855 |
STERBEORT | Göttingen |
Vorlage:Link FA Vorlage:Link FA Vorlage:Link FA Vorlage:Link GA
- Wikipedia:Gesprochener Artikel
- Träger der Copley Medal
- Mathematiker (19. Jahrhundert)
- Physiker (19. Jahrhundert)
- Statistiker (19. Jahrhundert)
- Persönlichkeit der Elektrotechnik
- Mitglied der Akademie der Wissenschaften zu Göttingen
- Astronom der Neuzeit
- Geodät
- Hochschullehrer (Göttingen)
- Träger des Bayerischen Maximiliansordens für Wissenschaft und Kunst
- Walhalla
- Ehrenbürger von Braunschweig
- Ehrenbürger von Göttingen
- Deutscher
- Geboren 1777
- Gestorben 1855
- Mann
- Wikipedia:Lesenswert