CGS-Einheitensystem

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 15. Oktober 2020 um 22:37 Uhr durch Wassermaus (Diskussion | Beiträge) (Die Aussage, mit der SI-Reform seien nun Ampere und Coulomb Basisgrößen, ist falsch. Was sich geändert hat, war, dass zuvor mu0 über die Kraftwirkung einen definierten Wert in N/A² hatte und nun nicht mehr. Dafür ist e fix. In diesem Zus.hang ist das irrelevant). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Das CGS-Einheitensystem (auch CGS-System, cgs-System, CGS oder cgs, aus dem Englischen „centimetre gram second“) ist ein metrisches, kohärentes Einheitensystem basierend auf den Einheiten Zentimeter, Gramm und Sekunde. Die CGS-Einheiten der Mechanik lassen sich eindeutig aus diesen Basiseinheiten ableiten, es existieren jedoch mehrere konkurrierende Erweiterungen des CGS-Systems für elektromagnetische Einheiten. Die vier am weitesten verbreiteten Varianten sind:

Nennenswerte Bedeutung hat heute nur noch das gaußsche Einheitensystem, mit „CGS-Einheit“ ist in moderner Literatur meistens eine gaußsche CGS-Einheit gemeint.

Überblick

Das CGS-System wurde 1874 von der British Association for the Advancement of Science eingeführt und 1889 durch das MKS-Einheitensystem, basierend auf den Basiseinheiten Meter, Kilogramm und Sekunde, abgelöst. Das MKS wurde seinerseits um die elektromagnetische Basiseinheit Ampere erweitert (dann häufig als MKSA-System bezeichnet) und ging schließlich 1960 im Système International d’Unités (SI) auf, welches heute zusätzlich die Basiseinheiten Mol, Candela und Kelvin umfasst. Auf den meisten Feldern ist das SI das einzig gebräuchliche Einheitensystem, es existieren jedoch Bereiche, in denen das CGS – insbesondere dessen erweiterte Formen – noch Verwendung findet.

Da CGS und MKS (bzw. das SI) im Bereich der Mechanik auf dem gleichen Größensystem mit den Basisgrößen Länge, Masse und Zeit fußen, sind die Dimensionsprodukte der abgeleiteten Einheiten in beiden Systemen gleich. Eine Umrechnung zwischen Einheiten beschränkt sich auf die Multiplikation mit einem reinen Zahlenfaktor. Vereinfachend kommt hinzu, dass nur Umrechnungsfaktoren in Potenzen von 10 auftreten, wie es sich ausgehend von den Beziehungen 100 cm = 1 m und 1000 g = 1 kg ergibt. Ein Beispiel: Für die Kraft ist die abgeleitete CGS-Einheit das dyn (entspricht 1 g·cm·s−2) und die abgeleitete MKS-Einheit das Newton (entspricht 1 kg·m·s−2). Damit lautet die Umrechnung 1 dyn = 10−5 N.

Auf der anderen Seite sind Umrechnungen zwischen elektromagnetischen Einheiten des CGS und denen des MKSA recht umständlich. Während das MKSA hierfür das Ampere als Einheit für die elektrische Stromstärke einführt, benötigt keine der Erweiterungen des CGS eine weitere Basiseinheit. Stattdessen werden die Proportionalitätskonstanten im Coulomb-Gesetz (elektrische Permittivität), im ampèreschen Gesetz und im faradayschen Induktionsgesetz per Definition festgelegt. Die verschiedenen sinnvollen Wahlmöglichkeiten bei der Festlegung haben zu den verschiedenen Ausprägungen des CGS-Systems geführt. In jedem Fall lassen sich alle elektromagnetischen Einheiten auf die drei rein mechanischen Basiseinheiten zurückführen. Allerdings ändern sich dadurch nicht nur die Dimensionsprodukte jener abgeleiteten Einheiten, sondern auch die Form von physikalischen Größengleichungen der Elektrodynamik (siehe z. B. Maxwell-Gleichungen). Es gibt damit keine Eins-zu-Eins-Entsprechung zwischen den elektromagnetischen Einheiten des MKSA (bzw. des SI) und des CGS, auch nicht zwischen den verschiedenen CGS-Varianten untereinander. Umrechnungen beinhalten neben einem reinen Zahlenfaktor eben auch die Größenwerte der obigen, im CGS eingesparten Konstanten.

Das Prinzip der Festschreibung von Naturkonstanten (statt der Einführung von Basiseinheiten) lässt sich auch auf andere Bereiche der Physik übertragen und hat zur Entwicklung weiterer Einheitensysteme wie des atomaren Einheitensystem geführt. Auch das SI setzt insbesondere seit den Änderungen 2019 auf diese Methode; im Gegensatz zum CGS und anderen Einheitensystemen werden die bisherigen Basiseinheiten trotzdem als solche weitergeführt.

CGS-Einheiten der Mechanik

Wie in anderen Einheitensystemen auch, umfassen die CGS-Einheiten zwei Einheitengruppen, die Basiseinheiten und die abgeleiteten Einheiten. Letztere lassen sich jeweils als Produkt von Potenzen (Potenzprodukt) der Basiseinheiten schreiben. Da das System kohärent („zusammenhängend“) ist, kommen in den Potenzprodukten keine weiteren Zahlenfaktoren vor. Für die CGS-Einheit einer beliebigen Größe G heißt das mathematisch:

Dabei sind cm, g und s die Einheitenzeichen der Basiseinheiten Zentimeter, Gramm und Sekunde. Die Exponenten α, β und γ sind jeweils positive oder negative ganze Zahlen oder Null. Obige Einheitengleichung kann auch als entsprechende Dimensionsgleichung dargestellt werden:

Dabei sind L, M und T die Dimensionszeichen der Basisgrößen Länge, Masse und Zeit (englisch time).

Da das MKS-Einheitensystem die gleichen Basisgrößen benutzt, ist die Dimension einer Größe in beiden Systemen gleich (gleiche Basen und gleiche Exponenten im Dimensionsprodukt). Wegen der zwei unterschiedlichen Basiseinheiten stimmen in der Einheitengleichung neben der Basis s nur die Exponenten überein. Formal lautet die Umrechnung:

Jeder CGS-Einheit entspricht somit eindeutig eine MKS-Einheit, sie unterscheiden sich nur um einen Zahlenfaktor.

Abgeleitete CGS-Einheiten mit besonderen Namen

Einigen abgeleiteten CGS-Einheiten wurden eigene Namen und Einheitenzeichen (Symbole) zugeordnet, die selbst wieder mit allen Basis- und abgeleiteten Einheiten kombiniert werden können. So eignet sich zum Beispiel die CGS-Einheit der Kraft, das Dyn (= g·cm/s2), um die Einheit der Energie, das Erg, als Dyn mal Zentimeter (dyn·cm) auszudrücken. Die folgende Tabelle listet die benannten Einheiten auf.

Größe Einheit Einheiten-
zeichen
ausgedrückt in
SI- CGS- CGS-Basis-
Einheiten
Schwerebeschleunigung Gal Gal 10−2 m·s−2 cm/s2 cm·s−2
Kraft Dyn dyn 10−5 N g·cm/s2 cm·g·s−2
Druck Barye Ba 10−1 Pa dyn/cm2 cm−1·g·s−2
Energie, Arbeit Erg erg 10−7 J dyn·cm cm2·g·s−2
Kinematische Viskosität Stokes St 10−4 m2·s−1 cm2/s cm2·s−1
Dynamische Viskosität Poise P 10−1 Pa·s g/(cm·s) cm−1·g·s−1
Wellenzahl Kayser kayser 102 m−1 1/cm cm−1

CGS-Einheiten der Elektrodynamik

Allgemeine Formulierung der Elektrodynamik

Elektrodynamische Größen sind über mehrere Naturgesetze mit mechanischen Größen verknüpft. Die Elektrodynamik selbst wird vollständig durch die Maxwell'schen Gleichungen beschrieben, die sich unabhängig vom Einheitensystem mit Hilfe zweier Proportionalitätskonstanten und formulieren lassen:

wobei die Ladungsdichte und die elektrische Stromdichte meint. Wie aus den obigen Gleichungen ersichtlich wird, verknüpft die Konstante die elektrische Ladung mit der elektrischen Feldstärke (Coulomb-Gesetz) und die Konstante den elektrischen Strom mit der magnetischen Flussdichte (Ampèresches Gesetz). Das konstante Verhältnis und dessen Kehrwert beschreibt die Abhängigkeit von elektrischem und magnetischem Feld, wenn diese sich zeitlich ändern (Verschiebungsstrom und Induktionsgesetz).

Jedes Einheitensystem der Mechanik kann zur Beschreibung der Elektrodynamik erweitert werden, indem die Größenwerte von jeweils 2 der 3 Konstanten , und festgelegt werden. Prinzipiell stehen dazu drei Wege offen:

  • Einführung von zwei neuen Basiseinheiten für die elektrische Ladung und elektrischen Strom . Hierdurch werden obige Konstanten zu Messgrößen, die mit einer Messunsicherheit behaftet sind.
  • Wahl von einer neuen Basiseinheit entweder für oder für und der expliziten Definition einer Konstanten. Die verbleibenden Konstanten sind dann fehlerbehaftete Messgrößen.
  • Verzicht auf neue Basiseinheiten durch explizite Definition zweier Konstanten. Auch die dritte Konstante ist dadurch festgelegt und nicht fehlerbehaftet.

Alle Erweiterungen des CGS-Systems setzen auf den dritten Weg. Im SI hingegen wurde der zweite Weg mit der Einführung des Amperes als Basiseinheit von und der Definition beschritten.

Folgende Tabelle fasst die unterschiedlichen Einheitensysteme zusammen:

Einheitensystem
Elektrostatisches CGS-System 1
Elektromagnetisches CGS-System 1
Gaußsches CGS-System
Heaviside-Lorentz-Einheitensystem 1
Internationales Einheitensystem (SI)(a) 1
(a) 
mit μ0=1,256 637 062 12(19)·10−6 N/A2 (näherungsweise 4π·10−7 N/A2) CODATA Recommended Values. NIST, abgerufen am 4. Juni 2019.

Elektromagnetische Einheiten in verschiedenen CGS-Systemen

Größe SI-Einheit Konversion in CGS-Einheiten in Basiseinheiten
esE Gauß emE SI Gauß
elektr. Ladung Q Coulomb (C) = A·s 3·109 statC (Fr) 10−1 abC A·s g1/2·cm3/2·s−1
elektr. Stromstärke I Ampere (A) = C/s 3·109 statA 10−1 abA (Bi) A g1/2·cm3/2·s−2
elektr. Spannung U Volt (V) = W/A 13·10−2 statV 108 abV kg·m2·s−3·A−1 g1/2·cm1/2·s−1
elektr. Feldstärke E V/m = N/C 13·10−4 statV/cm 106 abV/cm kg·m·s−3·A−1 g1/2·cm−1/2·s−1
elektr. Flussdichte D C/m2 4π·3·105 statC/cm2 4π·10−5 abC/cm2 A·s·m−2 g1/2·cm−1/2·s−1
elektr. Polarisation P C/m2 3·105 statC/cm2 10−5 abC/cm2 A·s·m−2 g1/2·cm−1/2·s−1
elektr. Dipolmoment p C·m 3·1011 statC·cm    101 abC·cm A·s·m g1/2·cm5/2·s−1
elektr. Widerstand R Ohm (Ω) = V/A 19·10−11 s/cm 109 abΩ kg·m2·s−3·A−2 cm−1·s
elektr. Leitwert G Siemens (S) = 1/Ω 9·1011 cm/s 10−9 s/cm kg−1·m−2·s3·A2 cm·s−1
spezifischer elektr. Widerstand ρ Ω·m 19·10−9 s 1011 abΩ·cm kg·m3·s−3·A−2 s
elektr. Kapazität C Farad (F) = C/V 9·1011 cm 10−9 abF kg−1·m−2·s4·A2 cm
Induktivität L Henry (H) = Wb/A 19·10−11 statH 109 abH (cm) kg·m2·s−2·A−2 cm−1·s2
magn. Flussdichte B Tesla (T) = Wb/m2 13·10−6 statT 104 G kg·s−2·A−1 g1/2·cm−1/2·s−1
magn. Fluss Φ Weber (Wb) = V·s 13·10−2 statT·cm2 108 G·cm2 (Mx) kg·m2·s−2·A−1 g1/2·cm3/2·s−1
magn. Feldstärke H A/m 4π·3·107 statA/cm 4π·10−3 Oe A·m−1 g1/2·cm−1/2·s−1
Magnetisierung M A/m 3·107 statA/cm 10−3 Oe A·m−1 g1/2·cm−1/2·s−1
magn. Spannung,
magn. Durchflutung
Vm
Θ
Ampere (A) 4π·3·109 statA 4π·10−1 Oe·cm (Gb) A g1/2·cm1/2·s−1
magn. Dipolmoment m A·m2 J/T 3·1013 statA·cm2 103 abA·cm2 (= erg/G) m2·A g1/2·cm5/2·s−1

Die Einheiten des esE und emE unterscheiden sich um den Faktor c bzw. c2, wobei c = 2,998…·1010 cm/s (hier gerundet auf 3·1010) die Lichtgeschwindigkeit ist.

Literatur

  • Encyclopaedia of Scientific Units, Weights and Measures: Their SI Equivalences and Origins. 3. Auflage. Springer, 2004, ISBN 1-85233-682-X.