Inverse Normalverteilung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die inverse Normalverteilung (auch inverse Gauß-Verteilung oder Wald-Verteilung genannt) ist eine kontinuierliche Wahrscheinlichkeitsverteilung. Sie wird in verallgemeinerten linearen Modellen verwendet. Bei der Untersuchung der Brownschen Molekularbewegung mit Drift und Streuungskoeffizient ist die zufällige Zeit des ersten Erreichens des Niveaus invers normalverteilt mit den Parametern .

siehe auch: Lévy-Prozess

Definition[Bearbeiten | Quelltext bearbeiten]

Dichtefunktionen verschiedener inverser Gaußverteilungen

Eine stetige Zufallsvariable genügt der inversen Normalverteilung mit den Parametern (Ereignisrate) und (Mittelwert), wenn sie die Wahrscheinlichkeitsdichte besitzt.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Erwartungswert[Bearbeiten | Quelltext bearbeiten]

Die inverse Normalverteilung besitzt den Erwartungswert

.

Varianz[Bearbeiten | Quelltext bearbeiten]

Die Varianz ergibt sich analog zu

.

Standardabweichung[Bearbeiten | Quelltext bearbeiten]

Daraus erhält man für die Standardabweichung

Variationskoeffizient[Bearbeiten | Quelltext bearbeiten]

Aus Erwartungswert und Varianz erhält man unmittelbar den Variationskoeffizienten

.

Schiefe[Bearbeiten | Quelltext bearbeiten]

Die Schiefe ergibt sich zu

.

Wölbung (Kurtosis)[Bearbeiten | Quelltext bearbeiten]

Die Wölbung ergibt sich zu

.

Die Exzess-Kurtosis ist

.

Charakteristische Funktion[Bearbeiten | Quelltext bearbeiten]

Die charakteristische Funktion hat die Form

.

Momenterzeugende Funktion[Bearbeiten | Quelltext bearbeiten]

Die momenterzeugende Funktion der inversen Normalverteilung ist

.

Reproduzierbarkeit[Bearbeiten | Quelltext bearbeiten]

Sind Zufallsvariable mit inverser Normalverteilung mit den Parametern und , dann ist die Größe wieder eine Zufallsvariable mit einer inversen Normalverteilung, aber mit den Parametern und .

Weblinks[Bearbeiten | Quelltext bearbeiten]