Elliptische Kurve

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel behandelt elliptische Kurven. Zur Ellipse als geometrische Figur siehe Ellipse.
Beispiel einer elliptischen Kurve über dem Körper der reellen Zahlen

In der Mathematik sind elliptische Kurven spezielle algebraische Kurven, auf denen geometrisch eine Addition definiert ist. Diese Addition wird in der Kryptographie zur Konstruktion sicherer Verschlüsselungsmethoden verwendet. Elliptische Kurven spielen aber auch innermathematisch eine wichtige Rolle. Historisch sind sie durch die Parametrisierung elliptischer Integrale entstanden.

Eine elliptische Kurve ist eine glatte algebraische Kurve der Ordnung 3 in der projektiven Ebene. Dargestellt werden elliptische Kurven meist als Kurven in der affinen Ebene, sie besitzen aber noch einen zusätzlichen Punkt im Unendlichen.

Elliptische Kurven über dem Körper der reellen Zahlen können als die Menge aller (affinen) Punkte angesehen werden, die die Gleichung

erfüllen, zusammen mit einem sogenannten Punkt im Unendlichen (notiert als oder ). Die (reellen) Koeffizienten und müssen dabei die Bedingung erfüllen, um Singularitäten auszuschließen.

Im Allgemeinen wird man sich bei der Betrachtung der angegebenen Gleichung aber nicht auf den Fall reeller Koeffizienten und Lösungen beschränken, sondern vielmehr den Fall betrachten, dass Koeffizienten und Lösungen aus einem beliebigen Körper stammen. Interessant sind hierbei insbesondere die Körper der komplexen und der rationalen Zahlen sowie Zahlkörper und endliche Körper. Untersucht wird auch die Frage nach Beziehungen zwischen elliptischen Kurven, bei denen dieselbe Gleichung über verschiedenen Körpern interpretiert wird. Zum Beispiel kann eine durch eine rationale Gleichung beschriebene elliptische Kurve als Kurve über betrachtet werden. In diesem Fall sind die Koeffizienten der Gleichung aus , die elliptische Kurve besteht aber aus allen Lösungen dieser Gleichung in .

Die Theorie der elliptischen Kurven verbindet unterschiedlichste Teilgebiete der Mathematik. Die Untersuchung elliptischer Kurven über Zahlkörpern oder endlichen Körpern erfordert Grundlagen aus der Geometrie und Algebra. Jede elliptische Kurve über den komplexen Zahlen kann mithilfe eines Gitters in der komplexen Zahlenebene als komplexer Torus dargestellt werden, sodass die algebraische Kurve auch als analytisches Objekt greifbar wird. Der Mathematiker Andrew Wiles bewies im Jahr 1994 den Modularitätssatz, der elliptische Kurven mit Modulformen in Zusammenhang bringt. Aus diesem Satz kann der Beweis eines bekannten zahlentheoretischen Problems (Fermats letzter Satz) gefolgert werden.

Praktische Anwendung finden elliptische Kurven in modernen Verschlüsselungsverfahren (Elliptische-Kurven-Kryptosystem), da mit ihrer Hilfe sogenannte Einwegfunktionen definiert werden können. Weitere Anwendungen finden sich bei der Faktorisierung natürlicher Zahlen.

Affine und projektive Ebene[Bearbeiten | Quelltext bearbeiten]

Der zweidimensionale Raum der -rationalen projektiven Punkte ist definiert als

mit der Äquivalenzrelation

.

Punkte aus werden üblicherweise als notiert, um sie von Punkten im dreidimensionalen affinen Raum zu unterscheiden.

Die projektive Ebene kann dargestellt werden als Vereinigung der Menge

mit der durch erzeugten Hyperebene von :

Um projektive Kubiken in der affinen Ebene darzustellen, identifiziert man dann für den projektiven Punkt mit dem affinen Punkt .

Im Fall einer elliptischen Kurve hat die (projektive) Polynomgleichung genau eine Lösung mit , nämlich den Punkt im Unendlichen .

Definition[Bearbeiten | Quelltext bearbeiten]

heißt elliptische Kurve über dem Körper , falls eine der folgenden (paarweise äquivalenten) Bedingungen erfüllt ist:

  • ist eine glatte projektive Kurve über vom Geschlecht 1 mit einem Punkt , dessen Koordinaten in liegen.
  • ist eine glatte projektive Kubik über mit einem Punkt , dessen Koordinaten in liegen.
  • ist eine glatte, durch eine Weierstraß-Gleichung
gegebene projektive Kurve mit Koeffizienten . Schreibt man
so ist gerade die Nullstellenmenge des homogenen Polynoms . (Beachte: Der Punkt erfüllt auf jeden Fall die Polynomgleichung, liegt also auf .)

Fasst man als affine Kurve auf, so erhält man eine affine Weierstraß-Gleichung

bzw. ein affines Polynom . In diesem Fall ist gerade die Menge der (affinen) Punkte, die die Gleichung erfüllen, zusammen mit dem sogenannten „unendlich fernen Punkt“ , auch als geschrieben.

Isomorphe elliptische Kurven[Bearbeiten | Quelltext bearbeiten]

Definition[Bearbeiten | Quelltext bearbeiten]

Jede elliptische Kurve wird durch ein projektives Polynom bzw. durch ein affines Polynom beschrieben. Man nennt zwei elliptische Kurven und isomorph, wenn die Weierstraß-Gleichung von aus der von durch einen Koordinatenwechsel der Form

mit entsteht. Die wichtigsten Eigenschaften elliptischer Kurven verändern sich nicht, wenn ein solcher Koordinatenwechsel durchgeführt wird.

Kurze Weierstraß-Gleichung[Bearbeiten | Quelltext bearbeiten]

Ist eine elliptische Kurve über einem Körper mit Charakteristik , gegeben durch die Weierstraß-Gleichung

so existiert ein Koordinatenwechsel, der diese Weierstraß-Gleichung in die Gleichung

transportiert. Diese nennt man eine kurze Weierstraß-Gleichung. Die durch diese kurze Weierstraß-Gleichung definierte elliptische Kurve ist zur ursprünglichen Kurve isomorph. Häufig geht man daher ohne Einschränkung davon aus, dass eine elliptische Kurve von vorneherein durch eine kurze Weierstraß-Gleichung gegeben ist.

Ein weiteres Resultat der Theorie der Weierstraß-Gleichungen ist, dass eine Gleichung der Form

genau dann eine glatte Kurve beschreibt, wenn die Diskriminante des Polynoms ,

nicht verschwindet.

Beispiele[Bearbeiten | Quelltext bearbeiten]

Schaubild der Kurven und
  • und sind elliptische Kurven über , da und sind.
  • ist eine elliptische Kurve sowohl über als auch über , da die Diskriminante ist. Über einem Körper mit Charakteristik dagegen ist und singulär, also keine elliptische Kurve.
  • ist über jedem Körper mit Charakteristik ungleich eine elliptische Kurve, da ist.

Über den reellen Zahlen gibt die Diskriminante eine Information über die Form der Kurve in der affinen Ebene. Für besteht der Graph der elliptischen Kurve aus zwei Komponenten (linke Abbildung), für hingegen nur aus einer einzigen Komponente (rechte Abbildung).

Gruppenoperation[Bearbeiten | Quelltext bearbeiten]

Elliptische Kurven haben die Besonderheit, dass sie zusammen mit der in diesem Abschnitt beschriebenen punktweisen Addition als kommutative Gruppen aufgefasst werden können. Im ersten Unterabschnitt wird diese Addition geometrisch veranschaulicht, bevor sie dann in den folgenden Abschnitten weiter formalisiert wird.

Geometrische Interpretation[Bearbeiten | Quelltext bearbeiten]

Geometrisch kann die Addition zweier Punkte einer elliptischen Kurve wie folgt beschrieben werden: Der Punkt im Unendlichen ist das neutrale Element . Die Spiegelung eines Punktes an der x-Achse liefert wieder einen rationalen Punkt der Kurve, das Inverse von . Die Gerade durch die rationalen Punkte schneidet die Kurve in einem dritten Punkt, Spiegelung dieses Punktes an der x-Achse liefert den rationalen Punkt .

Im Fall einer Tangente an den Punkt (also dem Grenzfall gegen auf der Kurve) erhält man mit dieser Konstruktion (Schnittpunkt Tangente mit Kurve, dann Spiegelung) den Punkt . Lassen sich keine entsprechenden Schnittpunkte finden, wird der Punkt im Unendlichen zuhilfe genommen, und man hat z. B. im Fall der Tangente ohne zweiten Schnittpunkt: .

Man kann zeigen, dass diese „Addition“ sowohl kommutativ als auch assoziativ ist, sodass sie tatsächlich die Gesetze einer abelschen Gruppe erfüllt. Zum Beweis des Assoziativgesetzes kann dabei der Satz von Cayley-Bacharach eingesetzt werden.

Sei nun ein Punkt der elliptischen Kurve. Der Punkt wird mit bezeichnet, entsprechend definiert man als k-fache Addition des Punktes . Ist nicht der 0-Punkt, kann auf diese Weise jeder Punkt der Kurve E erreicht werden (d. h., zu jedem Punkt auf der Kurve existiert eine natürliche Zahl mit ), wenn man die richtigen Erzeugenden der Gruppe kennt.

Die Aufgabe, aus gegebenen Punkten diesen Wert zu ermitteln, wird als Diskreter-Logarithmus-Problem der elliptischen Kurven (kurz ECDLP) bezeichnet. Es wird angenommen, dass das ECDLP (bei geeigneter Kurvenwahl) schwer ist, d. h. nicht effizient gelöst werden kann. Damit bieten sich elliptische Kurven an, um auf ihnen asymmetrische Kryptosysteme zu realisieren (etwa einen Diffie-Hellman-Schlüsselaustausch oder ein Elgamal-Kryptosystem).

Addition zweier verschiedener Punkte[Bearbeiten | Quelltext bearbeiten]

Addition auf der elliptischen Kurve y2=x3+1

Seien und die Komponenten der Punkte und . Mit wird das Ergebnis der Addition bezeichnet. Dieser Punkt hat also die Komponenten . Außerdem setze

.

Dann ist die Addition durch

  • und

definiert.

Die beiden Punkte und dürfen nicht dieselbe X-Koordinate besitzen, da es sonst nicht möglich ist, die Steigung zu berechnen, da dann entweder oder gilt. Bei der Addition erhält man , wodurch das Ergebnis als (neutrales Element) definiert ist. Dadurch ergibt sich auch, dass und zueinander invers bezüglich der Punktaddition sind. Ist , handelt es sich um eine Punktverdoppelung.

Verdoppelung eines Punktes[Bearbeiten | Quelltext bearbeiten]

Für die Punktverdoppelung (Addition eines Punktes zu sich selbst) eines Punktes unterscheidet man zwei Fälle.

Fall 1:

  • . Dabei wird aus der Kurvengleichung () herangezogen.

Der einzige Unterschied zur Addition von zwei verschiedenen Punkten liegt in der Berechnung der Steigung.

Fall 2:

Wegen ist klar erkennbar, dass zu sich selbst invers ist.

Rechenregeln für die „Addition“ von Punkten der Kurve[Bearbeiten | Quelltext bearbeiten]

Analytische Beschreibung über die Koordinaten:

Seien

  • zwei verschiedene Punkte,
  • die Addition zweier Punkte und
  • das neutrale Element (auch Unendlichkeitspunkt genannt).

Es gelten folgende Regeln:

Skalare Multiplikation eines Punktes[Bearbeiten | Quelltext bearbeiten]

Bei der skalaren Multiplikation handelt es sich lediglich um die wiederholte Addition dieses Punktes.

Diese Multiplikation kann unter Zuhilfenahme eines angepassten Square-&-Multiply-Verfahrens effizient gelöst werden.

Bei einer elliptischen Kurve über dem endlichen Körper GF(q) läuft die Punktaddition rechnerisch auf analoge Weise wie bei der Berechnung über , jedoch werden die Koordinaten über GF(q) berechnet.

Geschichte[Bearbeiten | Quelltext bearbeiten]

Die Theorie der elliptischen Kurven entwickelte sich zunächst im Kontext der Funktionentheorie. Bei verschiedenen geometrischen oder physikalischen Problemen – so zum Beispiel bei der Bestimmung der Bogenlänge von Ellipsen – treten elliptische Integrale auf. Zu diesen Integralfunktionen konnten Umkehrfunktionen bestimmt werden. Diese meromorphen Funktionen wurden aufgrund dieses Kontexts als elliptische Funktionen bezeichnet. Wie im folgenden Abschnitt dargestellt wird, kann man mittels elliptischer Funktionen auf eindeutige Weise jeder elliptischen Kurve über dem Körper der komplexen Zahlen einen Torus zuordnen. Auf diese Weise können dann die elliptischen Kurven klassifiziert werden und aufgrund dieses Zusammenhangs haben sie ihren Namen erhalten.

Seit dem Ende des 19. Jahrhunderts stehen arithmetische und zahlentheoretische Fragestellungen im Zentrum der Theorie. Es konnte gezeigt werden, dass elliptische Kurven sinnvoll auf allgemeinen Körpern definiert werden können und es wurde – wie zuvor schon beschrieben – gezeigt, dass eine elliptische Kurve als kommutative Gruppe interpretiert werden kann.[1]

In den 1990er Jahren konnte Andrew Wiles nach Vorarbeiten von Gerhard Frey und anderen mittels der Theorie elliptischer Kurven die Fermatsche Vermutung aus dem 17. Jahrhundert beweisen.

Elliptische Kurven über den komplexen Zahlen[Bearbeiten | Quelltext bearbeiten]

Interpretiert man wie üblich die komplexen Zahlen als Elemente der gaußschen Zahlenebene, so stellen elliptische Kurven über den komplexen Zahlen eine zweidimensionale Fläche dar, die in den vierdimensionalen eingebettet ist. Obwohl sich solche Flächen der Anschauung entziehen, lassen sich dennoch Aussagen über ihre Gestalt treffen, wie zum Beispiel über das Geschlecht der Fläche.

Komplexe Tori[Bearbeiten | Quelltext bearbeiten]

Es sei ein (vollständiges) Gitter in der komplexen Zahlenebene . Die Faktorgruppe ist eine eindimensionale abelsche kompakte komplexe Liegruppe, die als reelle Liegruppe isomorph zum Torus ist. Für eine Veranschaulichung kann man Erzeuger von wählen; der Quotient ergibt sich dann aus der Grundmasche

,

indem man jeweils gegenüberliegende Seiten verklebt.

Bezug zu ebenen Kubiken[Bearbeiten | Quelltext bearbeiten]

Ist ein Gitter in der komplexen Zahlenebene, so definieren die zugehörige Weierstraßsche ℘-Funktion und ihre Ableitung eine Einbettung

,

deren Bild die nichtsinguläre Kubik

ist. Jede nichtsinguläre ebene Kubik ist isomorph zu einer Kubik, die auf diese Weise entsteht.

Klassifikation[Bearbeiten | Quelltext bearbeiten]

Zwei eindimensionale komplexe Tori und für Gitter sind genau dann isomorph (als komplexe Liegruppen), wenn die beiden Gitter ähnlich sind, d. h. durch eine Drehstreckung auseinander hervorgehen. Jedes Gitter ist zu einem Gitter der Form ähnlich, wobei ein Element der oberen Halbebene ist; sind Erzeuger, so kann als oder gewählt werden. Die verschiedenen Wahlen für Erzeuger entsprechen der Operation der Gruppe auf der oberen Halbebene, die durch

gegeben ist. Zwei Elemente der oberen Halbebene definieren genau dann isomorphe elliptische Kurven und , wenn und in derselben -Bahn liegen; die Menge der Isomorphieklassen elliptischer Kurven entspricht damit dem Bahnenraum

dieser Raum wird von der j-Funktion bijektiv auf abgebildet; dabei ist der Wert der j-Funktion gleich der j-Invarianten der oben angegebenen Kubik.

Elliptische Kurven über den rationalen Zahlen[Bearbeiten | Quelltext bearbeiten]

Die Addition von Punkten elliptischer Kurven ermöglicht es, aus einfachen (geratenen) Lösungen einer kubischen Gleichung weitere Lösungen zu berechnen, die in der Regel weitaus größere Zähler und Nenner haben als die Ausgangslösungen (und deshalb kaum durch systematisches Probieren zu finden wären).

Zum Beispiel für die über definierte elliptische Kurve

findet man durch Raten die Lösung und daraus durch Addition auf der elliptischen Kurve die Lösung sowie durch weitere Addition auf der elliptische Kurve dann noch erheblich größere Lösungen. Das dahinterstehende allgemeine Prinzip ist die Beziehung

für Punkte mit ganzzahligen Koordinaten auf elliptischen Kurven über . (Dabei ist die für ganzzahlige Punkte durch definierte Höhe.)

Die Theorie elliptischer Kurven über dem Körper der rationalen Zahlen ist ein aktives Forschungsgebiet der Zahlentheorie mit einigen berühmten offenen Vermutungen wie der Vermutung von Birch und Swinnerton-Dyer.

Elliptische Kurven über endlichen Körpern[Bearbeiten | Quelltext bearbeiten]

Affine Punkte der elliptischen Kurve y2 = x3 − x über

Statt über den rationalen Zahlen kann man elliptische Kurven auch über endlichen Körpern betrachten. In diesem Falle besteht die Ebene, genauer gesagt die projektive Ebene, in der die elliptische Kurve liegt, nur noch aus endlich vielen Punkten. Daher kann auch die elliptische Kurve selbst nur endlich viele Elemente enthalten, was viele Betrachtungen vereinfachen kann. Für die Anzahl der Punkte einer elliptischen Kurve über einem Körper mit Elementen zeigte Helmut Hasse (1936) die Abschätzung[2]

und bewies damit eine Vermutung aus der Dissertation von Emil Artin (1924).[3]

Allgemeiner folgt aus den Weil-Vermutungen (bewiesen in den 1960er und 1970er Jahren) für die Anzahl der Punkte von über einer Körpererweiterung mit Elementen die Gleichung[4]

,

wobei und die beiden Nullstellen des charakteristischen Polynoms des Frobeniushomomorphismus auf der elliptischen Kurve über sind. René Schoof (1985) entwickelte den ersten effizienten Algorithmus zur Berechnung von . Es folgten Verbesserungen von A. O. L. Atkin (1992) und Noam Elkies (1990).

Elliptische Kurven über endlichen Körpern werden z. B. in der Kryptographie (Elliptische-Kurven-Kryptosystem) eingesetzt.

Die (bisher noch unbewiesene) Vermutung von Birch und Swinnerton-Dyer versucht, Aussagen über gewisse Eigenschaften elliptischer Kurven über den rationalen Zahlen zu erhalten, indem entsprechende Eigenschaften elliptischer Kurven über endlichen Körpern (sogenannte „reduzierte elliptische Kurven“) untersucht werden.

Anwendung in der Kryptographie[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Elliptic Curve Cryptography

Der US-Auslandsgeheimdienst NSA empfahl im Januar 2009, Verschlüsselung im Internet bis 2020 von RSA auf ECC (Elliptic Curve Cryptography) umzustellen.[5]

ECC ist ein Public-Key-Kryptosystem (oder asymmetrisches Kryptosystem), bei dem im Gegensatz zu einem symmetrischen Kryptosystem die kommunizierenden Parteien keinen gemeinsamen geheimen Schlüssel kennen müssen. Asymmetrische Kryptosysteme allgemein arbeiten mit Falltürfunktionen, also Funktionen, die leicht zu berechnen, aber ohne ein Geheimnis (die „Falltür“) praktisch unmöglich zu invertieren sind.

Die Verschlüsselung mittels elliptischer Kurven funktioniert im Prinzip so, dass man die Elemente der zu verschlüsselnden Nachricht (d. h. die einzelnen Bits) auf irgendeine Weise den Punkten einer (festen) elliptischen Kurve zuordnet und dann die Verschlüsselungsfunktion P–>nP mit einer (festen) natürlichen Zahl anwendet. Damit dieses Verfahren sicher ist, muss die Entschlüsselungsfunktion nP–>P schwer zu berechnen sein.

Da das Problem des diskreten Logarithmus in elliptischen Kurven (ECDLP) deutlich schwerer ist als die Berechnung des diskreten Logarithmus in endlichen Körpern oder die Faktorisierung ganzer Zahlen, kommen Kryptosysteme, die auf elliptischen Kurven beruhen – bei vergleichbarer Sicherheit – mit erheblich kürzeren Schlüsseln aus als die herkömmlichen asymmetrischen Kryptoverfahren, wie z. B. das RSA-Kryptosystem. Die derzeit schnellsten Algorithmen sind der Babystep-Giantstep-Algorithmus und die Pollard-Rho-Methode, deren Laufzeit bei liegt, wobei die Bitlänge der Größe des zugrundeliegenden Körpers ist.

L-Reihe[Bearbeiten | Quelltext bearbeiten]

Die elliptische Kurve über sei durch die Gleichung

mit ganzzahligen Koeffizienten gegeben. Die Reduktion der Koeffizienten modulo einer Primzahl definiert eine elliptische Kurve über dem endlichen Körper (mit Ausnahme einer endlichen Menge von Primzahlen , für welche die reduzierte Kurve Singularitäten aufweist und deshalb nicht elliptisch ist; in diesem Fall sagt man, habe schlechte Reduktion bei ).

Die Zetafunktion einer elliptischen Kurve über einem endlichen Körper ist die formale Potenzreihe

Sie ist eine rationale Funktion der Form

(Diese Gleichung definiert den Koeffizienten , falls gute Reduktion bei hat, die Definition im Fall schlechter Reduktion ist eine andere.)

Die -Funktion von über speichert diese Information für alle Primzahlen . Sie ist definiert durch

mit , falls gute Reduktion bei hat, und sonst.

Das Produkt konvergiert für . Hasse vermutete, dass die -Funktion eine analytische Fortsetzung auf die gesamte komplexe Ebene besitzt und eine Funktionalgleichung mit einem Zusammenhang zwischen und erfüllt. Hasses Vermutung wurde 1999 als Konsequenz des Beweises des Modularitätssatzes bewiesen. Dieser besagt, dass jede elliptische Kurve über eine modulare Kurve ist, und für die -Funktionen modularer Kurven ist die analytische Fortsetzbarkeit bekannt.

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Elliptic curves – Sammlung von Bildern, Videos und Audiodateien

Fußnoten[Bearbeiten | Quelltext bearbeiten]

  1. Elliptische Kurve. In: Guido Walz (Hrsg.): Lexikon der Mathematik. 1. Auflage. Spektrum Akademischer Verlag, Mannheim/Heidelberg 2000, ISBN 3-8274-0439-8.
  2. Helmut Hasse: Zur Theorie der abstrakten elliptischen Funktionenkörper. I, II & III. In: Journal für die reine und angewandte Mathematik. Band 1936, Nr. 175, 1936, doi:10.1515/crll.1936.175.193.
  3. Emil Artin: Quadratische Körper im Gebiete der höheren Kongruenzen. II. Analytischer Teil. In: Mathematische Zeitschrift. Band 19, Nr. 1, 1924, S. 207–246, doi:10.1007/BF01181075.
  4. Kapitel V, Theorem 2.3.1 in Joseph H. Silverman: The Arithmetic of Elliptic Curves. 2. Auflage. Springer, 2009, ISBN 978-0-387-09493-9.
  5. The Case for Elliptic Curve Cryptography. In: nsa.gov. 15. Januar 2009, archiviert vom Original am 19. Januar 2009, abgerufen am 28. April 2016 (englisch).