Elliptisches Integral

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Ein elliptisches Integral ist ein Integral vom Typ

wobei eine rationale Funktion in zwei Variablen und ein Polynom dritten oder vierten Grades ohne mehrfache Nullstelle ist. Das Integral heißt elliptisch, weil Integrale dieser Form bei der Berechnung des Umfangs von Ellipsen und der Oberfläche von Ellipsoiden auftreten. Auch in der Physik gibt es weitreichende Anwendungen.

Elliptische Integrale lassen sich im Allgemeinen nicht durch elementare Funktionen darstellen, sie können aber durch Umformungen in eine Summe von elementaren Funktionen und Integralen der unten beschriebenen Form überführt werden. Diese Integrale heißen elliptische Integrale erster, zweiter und dritter Art.

I. Art:
II. Art:
III. Art:

Dabei ist Zum Teil wird in der Literatur auch der Parameter statt in den Funktionsaufruf eingesetzt und der Definitionsbereich auf erweitert.

Vollständige elliptische Integrale[Bearbeiten | Quelltext bearbeiten]

Graph der vollständigen elliptischen Integrale und

Definition der vollständigen elliptischen Integrale[Bearbeiten | Quelltext bearbeiten]

Die Integrale mit unterer Integralgrenze 0 nennt man unvollständige elliptische Integrale. Ist zusätzlich die obere Integralgrenze , spricht man im Falle der I. und II. Art von vollständigen elliptischen Integralen. Die vollständigen elliptischen Integrale I. und II. Art stehen im direkten Bezug zur Gauß’schen hypergeometrischen Funktion .

In der nachfolgenden Tabelle sind die vollständigen elliptischen Integrale in der Integraldarstellung mit den Parametern und dargestellt. Die Jacobi-Form lässt sich mit der Substitution in die Legendre-Normalform überführen. In den Funktions-Bibliotheken von Matlab, Wolfram-Alpha, Mathematica, Python (SciPy) und GNU Octave ist der Parameter in Verwendung.

Definition der vollständigen elliptischen Integrale mit Parametern und
Konvention mit Parameter Konvention mit Parameter
I. Art: Jacobi-Form
I. Art: Legendre-Normalform
II. Art: Jacobi-Form
II. Art: Legendre-Normalform
III. Art: Jacobi-Form
III. Art: Legendre-Normalform

Definition der komplementären elliptischen Integrale[Bearbeiten | Quelltext bearbeiten]

Die komplementären vollständigen elliptischen Integrale und sind mit der komplementären Variable wie im Folgenden dargestellt definiert.

Darstellung per Potenzreihe[Bearbeiten | Quelltext bearbeiten]

Die vollständigen elliptischen Integrale lassen sich als Potenzreihe darstellen.[1] Die angegebenen Potenzreihen können zur numerischen Auswertung verwendet werden. Es ist jedoch darauf zu achten, dass die Konvergenz vom Argument abhängig ist. Die Verwendung von Potenzreihen ist bezüglich der Rechenzeit nicht die effizienteste Methode zur numerischen Auswertung. Ist in einer physikalischen Anwendung klar, dass das Argument in einem bezüglich der Genauigkeit geeignetem Bereich liegt, so bietet die Potenzreihen-Darstellung im Sinne der Linearisierung eine nützliche Methode zur Angabe von Näherungslösungen oder Faustformeln.

Darstellung per unendlichem Produkt[Bearbeiten | Quelltext bearbeiten]

In der folgenden Tabelle sind Produktdarstellungen des vollständigen elliptischen Integrals 1. Art und des komplementären elliptischen Integrals 1. Art angegeben. Oftmals wird auch die komplementäre Variable zur kompakteren Darstellung verwendet. Auffällig ist die Vertauschung von und bezüglich der beiden Produktformeln beim Vergleich zum Komplementär.

Produktdarstellung des vollständigen elliptischen Integrals I. Art
Vollständiges elliptisches Integral I. Art Komplementäres elliptisches Integral I. Art
Anfangswert
Rekursionsgleichung
Produktformeln

Darstellung per AGM-Algorithmus[Bearbeiten | Quelltext bearbeiten]

Neben den Potenzreihen existiert eine Darstellung als Grenzwert des iterierten arithmetisch-geometrischen Mittelwertes (AGM-Algorithmus). Im Folgenden stellt den arithmetischen Mittelwert, den geometrischen Mittelwert und eine Hilfsvariable dar. Die Anfangswerte sind wie angegeben durch das Argument definiert. Zu beachten ist, dass für das vollständige elliptische Integral I. Art ins Unendliche läuft. Deshalb kann nicht berechnet werden. Dies stellt jedoch kein Problem dar, da dieser Wert exakt zu bekannt ist. Bei einer Implementierung bedarf es also einer Fallunterscheidung. Die Parameter-Konvention lässt sich ebenfalls mit dem AGM-Algorithmus berechnen. Es bedarf ausschließlich der Substitution . In der Praxis zeigt sich, dass bei Verwendung von double-precision ( dezimalen Nachkommastellen) eine Wahl von Rekursionsschritten die besten Ergebnisse liefert. Bei sinkt die Genauigkeit aufgrund von Rundungsfehlern. Diese geringe Anzahl an Rekursionsschritten zeigt die Effizienz des AGM-Algorithmus.

AGM-Algorithmus zur Berechnung elliptischer Integrale
Anfangswerte Rekursionsgleichungen Elliptische Integrale

Durch Substitution gemäß findet sich weiterhin der sogenannte Quartic-AGM-Algorithmus, dessen Iterationsvorschrift in der nachfolgenden Tabelle dargestellt ist. Die Bezeichnung „Quartic“ bezieht sich auf die Konvergenz des Algorithmus. Die Konvergenzordnung des Algorithmus in der oberen Tabelle ist quadratisch.

Quartic-AGM-Algorithmus zur Berechnung elliptischer Integrale
Anfangswerte Rekursionsgleichungen Elliptische Integrale

Spezielle Eigenschaften und Identitäten[Bearbeiten | Quelltext bearbeiten]

Hier sind , und wieder die komplementären Größen.

Spezielle Funktions-Werte[Bearbeiten | Quelltext bearbeiten]

Dabei bezeichnet die Lemniskatische Konstante.

Spezielle Identitäten[Bearbeiten | Quelltext bearbeiten]

Hierbei löst der Jacobische Sinus-Amplitudinis-Ausdruck für x die Gleichung auf.

Insgesamt gilt für alle Werte n ∈ ℕ und 0 ≤ k ≤ 1 folgende Formel:

Hierbei ist sn der Sinus Amplitudinis und dn das Delta amplitudinis.

Ableitungen[Bearbeiten | Quelltext bearbeiten]

Umkehrfunktionen[Bearbeiten | Quelltext bearbeiten]

Umkehrfunktionen oder algebraische Funktionen von Umkehrfunktionen der elliptischen Integrale heißen elliptische Funktionen. Sie sind mit den trigonometrischen Funktionen verwandt.

Unvollständige elliptische Integrale[Bearbeiten | Quelltext bearbeiten]

Definition der unvollständigen elliptischen Integrale[Bearbeiten | Quelltext bearbeiten]

Graph der elliptischen Integrale erster Art in Legendre-Form für verschiedene Parameter
Graph der elliptischen Integrale zweiter Art in Legendre-Form für verschiedene Parameter

In der nachfolgenden Tabelle sind die Definitionen der unvollständigen elliptischen Integrale in Jacobi-Form und in Legendre-Normalform angegeben. Die Jacobi-Form lässt sich mit der Substitution in die Legendre-Normalform überführen. Die unvollständigen elliptischen Integrale besitzen im Vergleich zu den vollständigen elliptischen Integralen einen zusätzlichen Freiheitsgrad, welcher der oberen Integrationsgrenze entspricht. Somit stellen die vollständigen elliptischen Integrale einen Spezialfall der Unvollständigen dar. In den Funktions-Bibliotheken von Matlab, Wolfram-Alpha, Mathematica, Python (SciPy) und GNU Octave ist der Parameter und die Legendre-Normalform in Verwendung.

Definition der unvollständigen elliptischen Integrale mit Parametern und
Konvention mit Parameter Konvention mit Parameter
I. Art: Jacobi-Form
I. Art: Legendre-Normalform
II. Art: Jacobi-Form
II. Art: Legendre-Normalform
III. Art: Jacobi-Form
III. Art: Legendre-Normalform

Additionstheoreme[Bearbeiten | Quelltext bearbeiten]

Mit folgenden Theoremen können die unvollständigen elliptischen Integrale additiv verknüpft werden. Die Legendre-Normalform wird zur Darstellung verwendet.

Elliptische Integrale erster Art:

Elliptische Integrale zweiter Art:

Mit folgendem Theorem können arithmetische Mittlungen durchgeführt werden:

Modultransformation[Bearbeiten | Quelltext bearbeiten]

Mit folgenden Formeln wird der Modul transformiert:

Für alle Werte n ∈ ℕ und 0 ≤ k ≤ 1 gilt folgende Formel:

Unvollständige elliptische Integrale als Stammfunktionen für algebraische Wurzelfunktionen[Bearbeiten | Quelltext bearbeiten]

Mit dieser Formel lassen sich die Kehrwerte der Quadratwurzeln von Polynomen vierten Grades integrieren:

Hierbei müssen die Werte , , und alle vier positiv sein.

Beispiel:

Alternative Darstellungen[Bearbeiten | Quelltext bearbeiten]

Symmetrische Carlson-Formen[Bearbeiten | Quelltext bearbeiten]

Die symmetrischen Carlson-Formen sind eine alternative Menge an Funktionen, durch die die klassischen elliptischen Integrale ausgedrückt werden können. Die moderneren Carlson-Formen wurden erst in den 1960er Jahren erfunden, während die Legendre-Formen bereits 1825 formuliert worden waren. Die Carlson-Formen bieten einige Vorteile gegenüber den klassischen elliptischen Integralen.

Unvollständige elliptische Integrale[Bearbeiten | Quelltext bearbeiten]

Unvollständige elliptische Integrale können mit Hilfe der symmetrischen Carlson-Formen , und ausgerückt werden:

(für und )

Vollständige elliptische Integrale[Bearbeiten | Quelltext bearbeiten]

Vollständige elliptischen Integrale erhält man durch Einsetzen von φ = π/2:

Bulirsch-Integrale[Bearbeiten | Quelltext bearbeiten]

Eine verallgemeinerte Version der vollständigen elliptischen Integrale ist das Bulirsch-Integral[2]

Es gilt[3]

Die Funktion cel hat den Vorteil, dass bestimmte in der Praxis vorkommende Kombinationen der normalen elliptischen Integrale als gemeinsame Funktion dargestellt werden können, und damit numerische Instabilitäten und undefinierte Wertebereiche vermieden werden können.

Weitere Bulirsch-Integrale und existieren.

Numerische Auswertung[Bearbeiten | Quelltext bearbeiten]

Die elliptischen Integrale können mit Hilfe des oben genannten arithmetisch-geometrischen Mittelwertes (AGM) effizient berechnet werden. Sie können auch zur Auswertung in die symmetrische Carlson-Form überführt werden.[4] Zur numerischen Auswertung der Carlson-Formen existieren zum AGM ähnliche Algorithmen.[5] Eine Annäherung mit Hilfe von gebrochenrationalen Funktionen höherer Ordnung ist auch möglich.[6] Eine direkte numerische Quadratur z. B. mit dem tanh-sinh-Verfahren ist ebenfalls möglich.

Bezug zur Gammafunktion[Bearbeiten | Quelltext bearbeiten]

Für alle n ∈ ℕ gilt folgender Zusammenhang zwischen der Gammafunktion und den elliptischen Integralen:

Bei der Berechnung des abgebildeten Integrals für die Werte n = 3, 4, 6 und 8 erhält man folgende Resultate:

Mit der Berechnung dieser Integrale und der Anwendung der Eulerschen Formel des Ergänzungssatzes lassen sich die Gamma-Funktionswerte ermitteln.

Anwendungsbeispiele[Bearbeiten | Quelltext bearbeiten]

Eine klassische Anwendung der elliptischen Integrale ist die exakte Bewegung eines Pendels.

Umfang einer Ellipse[Bearbeiten | Quelltext bearbeiten]

Eine klassische Anwendung ist die Berechnung des Umfangs einer Ellipse. Im Folgenden ist eine Ellipsen-Parameterform mit den Halbachsen , angegeben. Das Ergebnis stellt sich mit dem vollständigen elliptischen Integral II. Art dar. Hierbei ist die Parameter-Konvention verwendet.

Die Äquivalenz der letzten beiden Ausdrücke ist ersichtlich, wenn vorher statt ausgeklammert wird. Im letzten Ausdruck ist für . Die zugehörige Anwendung des unvollständigen elliptischen Integrals II. Art ergibt sich, indem die obere Integrationsgrenze als Variable wie im Folgenden angesetzt wird. Damit ergibt sich die Bogenlänge der Ellipse in Abhängigkeit vom Parameter .

Elektrisches Skalarpotential einer homogenen, kontinuierlichen, ringförmigen Ladungsverteilung[Bearbeiten | Quelltext bearbeiten]

Eine klassische Problemstellung aus der Elektrostatik ist die Berechnung des elektrischen Skalarpotentials bei gegebener räumlicher Ladungsverteilung. Bei einer homogenen, kontinuierlichen, ringförmigen Ladungsverteilung lässt sich das elektrische Skalarpotential mit Hilfe des vollständigen elliptischen Integrals 1. Art beschreiben. Das Ergebnis ist hier mit der Parameter-Konvention mit angegeben. In der angegebenen Lösung repräsentiert die elektrische Gesamtladung, den Radius des Ringes und die Vakuum-Permittivität. Weiterhin ist das Skalarpotential mit den Zylinderkoordinaten angegeben. Da keine Abhängigkeit bezüglich der Azimut-Koordinate besteht, ist ersichtlich, dass es sich um eine zylindersymmetrische Problemstellung handelt.

Elektrisches Skalarpotential einer homogenen, kontinuierlichen, ringförmigen Dipolverteilung[Bearbeiten | Quelltext bearbeiten]

Neben der einfachen Ladungsverteilung besteht ebenfalls die Möglichkeit, eine ringförmige Verteilung axial ausgerichteter Dipole zu betrachten. Die Lösung des elektrischen Skalarpotentials ist im Folgenden angegeben. Dabei repräsentiert die -Komponente des elektrischen Dipolmoments, den Radius des Ringes und die Vakuum-Permittivität. Das Ergebnis ist hier mit der Parameter-Konvention mit angegeben.

Magnetisches Vektorpotential eines ringförmigen stromdurchflossenen Leiters[Bearbeiten | Quelltext bearbeiten]

Ein Beispiel aus der Magnetostatik stationärer Ströme stellt die Berechnung des Magnetfeldes eines stromdurchflossenen Ringleiters dar. Es bietet sich die Berechnung des magnetischen Vektorpotentials an, aus dem sich in weiterer Betrachtung mit Hilfe der Rotation die magnetische Flussdichte bestimmen lässt. Hier repräsentiert die elektrische Stromstärke, den Radius des Ringleiters und die Vakuum-Permeabilität. Weiterhin ist das magnetische Vektorpotential mit den Zylinderkoordinaten und mit dem Einheits-Basisvektor in azimutaler Richtung angegeben. Die Lösung stellt sich durch eine Kombination von vollständigem elliptischen Integral 1. und 2. Art dar. Das Ergebnis ist hier mit der Parameter-Konvention mit angegeben. Zur numerischen Auswertung der angegebenen Funktion eignet sich besonders das weiter oben angegebene Bulirsch-Integral . Der Vorteil ist eine höhere numerische Stabilität in der Umgebung .[7]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Louis Vessot King: On the direct numerical calculation of elliptic functions and integrals. Cambridge University Press, 1924, archive.org.
  • Jonathan M. Borwein, Peter B. Borwein: Pi and the AGM. A study in analytical Number Theory and Computational Complexity. John Wiley & Sons, 1987.
  • Harris Hancock: Elliptic Integrals. John Wiley & Sons, 1917.
  • P. F. Byrd, M. D. Friedman: Handbook of Elliptic Integrals for Engineers and Scientists. Springer-Verlag, 1971.
  • Viktor Prasolov, Yuri Solovyev: Elliptic Functions and Elliptic Integrals. AMS, 1997.

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Siehe Eric W. Weisstein: Complete Elliptic Integral of the First Kind. In: MathWorld (englisch). Die Form ohne das !!-Symbol stammt aus:
    Bronstein, Semendjajew: Taschenbuch der Mathematik. Frankfurt/Main 1991, S. 223.
  2. NIST Digital Library of Mathematical Functions 19.2: Bulirsch’s Integrals.
  3. Numerical calculation of elliptic integrals and elliptic functions. III. In: Numerische Mathematik. 13, Nr. 4, 1969, S. 305–315. doi:10.1007/BF02165405.
  4. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery: Numerical Recipes: The Art of Scientific Computing. Hrsg.: Cambridge University Press. 3. Auflage. New York 2007, ISBN 978-0-521-88068-8, Section 6.12. Elliptic Integrals and Jacobian Elliptic Functions.
  5. B. C. Carlson: Numerical computation of real or complex elliptic integrals. In: Numerical Algorithms. Band 10, Nr. 1, März 1995, ISSN 1017-1398, S. 13–26, doi:10.1007/bf02198293.
  6. Cephes Mathematical Library.
  7. Peter Lowell Walstrom: Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for Circular Current Loops in Cylindrical Coordinates. Office of Scientific and Technical Information (OSTI), 24. August 2017, doi:10.2172/1377379.