Exoplanet

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Extrasolarer Planet)
Zur Navigation springen Zur Suche springen
Hubble-Aufnahme von Staubscheibe und Exoplanet (s. Einblendung rechts unten) um den Stern Fomalhaut

Ein Exoplanet, auch extrasolarer Planet, ist ein planetarer Himmelskörper außerhalb (griechisch ἔξω) des vorherrschenden gravitativen Einflusses der Sonne, aber innerhalb des gravitativen Einflusses eines anderen Sterns oder Braunen Zwergs. Extrasolare Planeten gehören also nicht dem Sonnensystem an, sondern einem anderen Planetensystem. Die größten Objekte sind selbst Braune Zwerge.

Daneben gibt es auch den Planeten ähnliche Himmelskörper, die keinen anderen Himmelskörper umrunden und unter den neu geprägten Oberbegriff Planemo (von englisch planetary mass object) fallen, wobei derzeit (Stand Ende 2016) kein Konsens darüber besteht, ob und ggf. unter welchen Bedingungen diese auch als Exoplaneten zu bezeichnen sind.[Anm. 1] Sowohl Exoplaneten als auch diese „frei fliegenden bzw. vagabundierenden Planeten“ zählen zu den Objekten planetarer Masse.

Entdeckung der ersten Exoplaneten[Bearbeiten | Quelltext bearbeiten]

Bereits in den 1980er Jahren wurden die ersten Exoplaneten entdeckt, aber damals entweder als Brauner Zwerg klassifiziert (HD 114762 b) oder aufgrund der noch ungenügenden Messgenauigkeit zeitweilig wieder verworfen (Gamma Cephei b).[1]

Die ersten Planeten überhaupt, die außerhalb des Sonnensystems bestätigt wurden, umkreisen den Pulsar PSR 1257+12. Der Pulsar wurde 1990 vom polnischen Astronomen Aleksander Wolszczan entdeckt. Durch genaue Messungen der Wiederkehrzeit des Strahls, der die Erde vom Pulsar aus erreicht, konnten 1992 drei Planeten mit Massen von 0,02, 4,3 und 3,9 Erdmassen und Umlaufzeiten von 25,262, 66,5419 und 98,2114 Tagen nachgewiesen werden. 1994 wurde ein weiterer Planet um den Pulsar PSR B1620-26 entdeckt.[2] Auf diesen Planeten ist Leben, wie man es von der Erde kennt, praktisch ausgeschlossen.

Die erste definitive Entdeckung eines Exoplaneten in einem Orbit um einen Stern ähnlich der Sonne wurde 1995 von Michel Mayor vom Departement für Astronomie der Universität Genf und seinem Mitarbeiter Didier Queloz mit Hilfe der Radialgeschwindigkeitsmethode gemacht. Der Planet 51 Pegasi b kreist im 4,2-Tage-Takt um den ca. 40 Lichtjahre von der Erde entfernten Stern 51 Pegasi (Sternbild: Pegasus) und hat 0,46 Jupitermassen.

Exoplaneten im Orbit um sonnenähnliche Sterne konnten lange nicht mit Teleskopen direkt beobachtet werden, da sie sehr lichtschwach sind. Sie werden von dem um ein Vielfaches helleren Stern, um den sie kreisen, überstrahlt. Das Auflösungsvermögen von erdgestützten Teleskopen reicht heute meist nicht aus, um zwei so nahe beieinander liegende Objekte mit so großem Helligkeitsunterschied wie einen Planeten und seinen Stern getrennt darzustellen. Daher war der erste Exoplanet, der direkt optisch abgebildet werden konnte (2M1207 b), ein Exoplanet um einen Braunen Zwerg.

Nachweismethoden[Bearbeiten | Quelltext bearbeiten]

Indirekte Nachweismethoden[Bearbeiten | Quelltext bearbeiten]

Schematische Darstellung der Bahnen in Planeten­systemen, die mit der Transit­methode entdeckbar sind (NASA)

Bislang konnte man die meisten Exoplaneten nur indirekt nachweisen. Mehrere Methoden nutzen dabei den Einfluss der Planeten auf den Zentralstern:

Transitmethode[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Transitmethode

Falls die Umlaufbahn des Planeten so liegt, dass er aus Sicht der Erde genau vor dem Stern vorbeizieht, erzeugen diese Bedeckungen periodische Absenkungen in dessen Helligkeit. Sie lassen sich durch hochpräzise Photometrie (Helligkeitsmessungen des Sterns) nachweisen, während der Exoplanet vor seinem Zentralstern vorübergeht. Diese Messung kann mittels terrestrischer Teleskope wie SuperWASP oder wesentlich genauer durch Satelliten wie COROT, Kepler oder ASTERIA durchgeführt werden. Anfang 2005 gelang mit dem Spitzer-Weltraumteleskop im Infrarotlicht auch der Nachweis einer sekundären Bedeckung eines heißen Planeten durch den Zentralstern. Lichtkurven des Hot Jupiter CoRoT-1 b zeigen zusätzlich Schwankungen um 0,0001 mag, die als Lichtphase des Planeten interpretiert werden.[3][4]

Um die Massen der Planeten zu ermitteln, muss zusätzlich eine der anderen Beobachtungsmethoden angewandt werden.

Radialgeschwindigkeitsmethode[Bearbeiten | Quelltext bearbeiten]

Schematische Darstellung der Bewegung des Zentral­gestirns um den gemeinsamen Schwerpunkt, die Messung der Bewegung des Sterns ist der Ansatz für die Radial­geschwindigkeits­methode und für die astrometrische Methode.

Stern und Planet(en) bewegen sich unter dem Einfluss der Gravitation um ihren gemeinsamen Schwerpunkt. Der Stern bewegt sich wegen seiner größeren Masse um wesentlich kleinere Wege als der Planet. Falls man von der Erde aus nicht genau senkrecht auf diese Bahn schaut, hat diese periodische Bewegung des Sterns eine Komponente in Sichtrichtung (Radialgeschwindigkeit), die durch Beobachtung der abwechselnden Blau- und Rotverschiebung (Doppler-Effekt) mit Hilfe eines Frequenzkammes in sehr genauen Spektren des Sterns nachgewiesen werden kann.[5] Da die Bahnneigung unbekannt ist (sofern die Planeten nicht gleichzeitig mit der Transitmethode nachgewiesen sind), kann man hier bei bekannter Sternmasse nicht die Planetenmasse selbst berechnen und erst recht nicht nachweisen, sondern nur eine Untergrenze für eventuell vorhandene Planeten berechnen.

Astrometrische Methode[Bearbeiten | Quelltext bearbeiten]

Die Bewegung des Sterns um den gemeinsamen Schwerpunkt hat auch Komponenten quer zur Sichtrichtung. Diese sollten durch genaue Vermessung seiner Sternörter relativ zu anderen Sternen nachweisbar sein. Bei bekannter Sternmasse und ‑entfernung könnte man hier auch die Masse des Planeten angeben, da die Bahnneigung ermittelt werden kann. Schon Mitte des 20. Jahrhunderts wurde mit der astrometrischen Methode nach Exoplaneten gesucht, die Beobachtungen waren aber zu ungenau und behauptete Entdeckungen stellten sich später als unrichtig heraus. Auch der Astrometriesatellit Hipparcos hatte noch nicht die notwendige Genauigkeit um neue Exoplaneten zu entdecken. Diese soll in Zukunft durch Interferometrie mit dem Very Large Telescope und Weltraumexperimenten wie zum Beispiel Gaia erreicht werden.

Gravitational-microlensing-Methode[Bearbeiten | Quelltext bearbeiten]

Eine weitere indirekte Methode, die den Effekt auf Hintergrundsterne nutzt. Unter Microlensing versteht man die Verstärkung des Lichts eines Hintergrundobjekts durch Gravitationslinsenwirkung eines Vordergrundsterns. Die Verstärkung nimmt zu und wieder ab, während sich der Stern vor dem Hintergrundobjekt vorbeibewegt. Dieser Helligkeitsverlauf kann durch einen Planeten des Vordergrundsterns eine charakteristische Spitze erhalten. Ein erstes solches Ereignis wurde 2003 beobachtet. Microlensing-Ereignisse sind selten, erlauben aber auch Beobachtungen bei weit entfernten Sternen. Allerdings ist es noch nicht sicher erwiesen, ob sich damit auch Planeten extrem weit entfernter Systeme nachweisen lassen (z. B. Extragalaktische Planeten).

Berechnung nach gestörter Planetenbahn[Bearbeiten | Quelltext bearbeiten]

Eine andere indirekte Methode, die auf der Beobachtung bereits bekannter Exoplaneten beruht. Mehrere Planeten im selben System ziehen einander über die Gravitation an, was die Planetenbahnen leicht verändert. Im Januar 2008 reichte ein spanisch-französisches Forscherteam eine Arbeit über Computersimulationen ein, mit der die Existenz eines Planeten GJ 436c anhand von Störungen in der Bahn des benachbarten Planeten GJ 436b nahegelegt wird. Die Berechnungen lassen für diesen Exoplaneten eine Masse von ungefähr fünf Erdmassen vermuten.[6] Ein Nachweis für diese Hypothese fehlt bislang.[7]

Lichtlaufzeit-Methode[Bearbeiten | Quelltext bearbeiten]

Die Lichtlaufzeit-Methode beruht auf einem streng periodischen Signal von einem Zentralstern oder einem zentralen Doppelstern. Durch den Einfluss der Gravitation verschiebt sich bei einem umlaufenden Planeten der Schwerpunkt des Sternsystems, wodurch es zu einer zeitlichen Verschiebung bei den periodischen Signalen kommt. Hinreichend genaue Signale kommen von Pulsarpulsen, den Maxima einiger pulsationsveränderlicher Sterne sowie den Minima bedeckungsveränderlicher Sterne. Die Lichtlaufzeit-Methode ist entfernungsunabhängig, aber sie ist stark beeinflusst von der Genauigkeit des periodischen Signals.[8] Daher konnte man mit dieser Methode bisher nur Exoplaneten um Pulsare nachweisen.

Direkte Beobachtung[Bearbeiten | Quelltext bearbeiten]

2M1207 und der Exoplanet 2M1207b (ESO/VLT)

Am 10. September 2004 gab die ESO bekannt, dass möglicherweise erstmals eine direkte Aufnahme eines Planeten beim 225 Lichtjahre entfernten Braunen Zwerg 2M1207 gelungen ist.[9] Nachfolgemessungen mit dem Hubble-Weltraumteleskop 2006 konnten dies bestätigen.[10]

Am 31. März 2005 gab eine Arbeitsgruppe des astrophysikalischen Instituts der Universitäts-Sternwarte Jena bekannt, einen Planeten von nur ein- bis zweifacher Masse des Planeten Jupiter bei dem der Sonne ähnlichen, aber mit einem Alter von ca. 2 Millionen Jahren wesentlich jüngeren Stern GQ Lupi, der sich gerade in der T-Tauri-Phase befindet, beobachtet zu haben.[11] Auch diese Beobachtung erfolgte mit dem Very Large Telescope der ESO im infraroten Spektralbereich.

Anfang 2008 entdeckten britische Astronomen in der Nähe des 520 Lichtjahre von der Erde entfernten und mit einem Alter von etwa 100.000 Jahren noch sehr jungen Sterns HL Tau mittels des Very Large Array einen Exoplaneten in der Entwicklungsphase.[12]

Ein klarer direkter Nachweis wurde am 14. November 2008 veröffentlicht: Auf zwei Aufnahmen des Hubble-Weltraumteleskops aus den Jahren 2004 und 2006 im Bereich des sichtbaren Lichts ist ein sich bewegender Lichtpunkt zu erkennen, der eine Keplerbahn beschreibt.[13] Es handelt sich um den Planeten Dagon, der eine Masse von etwa drei Jupitermassen hat, und der den Stern Fomalhaut in einer Entfernung von 113 AE umkreist (dem Zwölffachen der Distanz zwischen Sonne und Saturn). Der Planet umkreist Fomalhaut am inneren Rand des Staubgürtels, der Fomalhaut umgibt. Nach Angaben der Entdecker ist der Planet das bisher kühlste und kleinste Objekt, das außerhalb des Sonnensystems abgebildet werden konnte. Fomalhaut ist 25 Lichtjahre von der Erde entfernt und besitzt die doppelte Masse der Sonne.

Fast gleichzeitig gaben Astronomen bekannt, dass es am Gemini-North-Observatorium und am Keck-Observatorium gelungen sei, ein ganzes Planetensystem um den 130 Lichtjahre entfernten Stern HR 8799 im Sternbild Pegasus abzubilden.[14] Beobachtungen mittels adaptiver Optik im infraroten Licht zeigen drei Planeten, deren Massen mit sieben bis zehn Jupitermassen angegeben werden. Die Exoplaneten umkreisen ihr Zentralgestirn im Abstand von 25, 40 und 70 Astronomischen Einheiten. Mit einem geschätzten Alter von 60 Millionen Jahren sind sie noch jung genug, um selbst Wärmestrahlung abzugeben.

Bekannte Projekte und Instrumente zum Nachweis von Exoplaneten[Bearbeiten | Quelltext bearbeiten]

Name Typ Methode(n) berühmte Entdeckungen
Kepler-Mission Weltraumteleskop Transitmethode, Orbital Brightness Modulation, Transit Timing Variations fast alle Planeten der Kepler- und K2-Sterne (z. B. Kepler-452b, Kepler-90-System)
CoRoT-Mission Weltraumteleskop Transitmethode CoRoT-9 b, CoRoT-7 b
Transiting Exoplanet Survey Satellite Weltraumteleskop Transitmethode
HARPS bodengestützt Radialgeschwindigkeitsmethode Gliese 667 Cc, Ross 128b, Gliese 581-System
OGLE bodengestützt Microlensing, Transitmethode OGLE-2005-BLG-390L b
MOA bodengestützt Microlensing MOA-2007-BLG-192Lb
SuperWASP bodengestützt Transitmethode WASP-12b
HATNet bodengestützt Transitmethode HAT-P-1b
Hubble-Weltraumteleskop bodengestützt Imaging, Transitmethode Fomalhaut b
Trappist bodengestützt Transitmethode TRAPPIST-1 b bis d

Benennung[Bearbeiten | Quelltext bearbeiten]

Die Regeln zur Benennung von Exoplaneten sind von der Internationalen Astronomischen Union (IAU) festgelegt.[15] Danach erhält jeder Exoplanet eine „wissenschaftliche Bezeichnung“ (“scientific designation”), die aus dem Namen oder der Katalogbezeichnung des Zentralsterns sowie einem angehängten lateinischen Kleinbuchstaben besteht. Letztere werden dabei in der alphabetischen Reihenfolge der Entdeckung vergeben, beginnend mit „b“. Für gleichzeitig entdeckte Planeten um einen Zentralstern gibt die IAU keine Regelung vor; üblicherweise werden die Buchstaben hier in der Reihenfolge des Abstandes zum Zentralstern vergeben. Ob der Kleinbuchstabe von der Sternbezeichnung durch ein Leerzeichen abzusetzen ist, ist nicht geregelt; die Beispiele im Regelungstext selbst sind hierin uneinheitlich. Wenn der Sternname ein Mehrfachsternsystem bezeichnet, dessen einzelne Komponenten durch lateinische Großbuchstaben gekennzeichnet sind, ist für eine einzeln umrundete Komponente deren Kennbuchstabe dem Kleinbuchstaben unmittelbar (ohne Leerzeichen) voranzustellen. Wenn mehrere Komponenten umrundet werden, sind deren Kennbuchstaben eingeklammert dem Sternennamen anzuhängen. Als Beispiele sind unter anderem genannt: „51 Pegasi b“, „CoRoT-7b“, „Alpha Centauri Bb“, „Kepler-34 (AB) b“.

Neben diesen wissenschaftlichen Bezeichnungen lässt die IAU auch public names zu, mit Gestaltungsregeln analog zur Benennung von Asteroiden. Dazu veranstaltete sie im Jahr 2015 einen weltweiten Wettbewerb (NameExoWorlds) zur Benennung von 305 ausgewählten Exoplaneten. Die Ergebnisse wurden im Dezember 2015 veröffentlicht.[16]

Zahl der bekannten Exoplaneten[Bearbeiten | Quelltext bearbeiten]

Mit dem Stand vom 06. Juli 2018 sind 3801 Exoplaneten in 2842 Systemen bekannt,[2] wobei allerdings einige Objekte Massen im Bereich von braunen Zwergen haben. So hat das massenreichste Objekt in der Extrasolar Planets Encyclopaedia 81 MJ (Jupitermassen), während beim NASA Exoplanet Archive eine obere Massenlimite von 30 MJ gesetzt wurde[17]. Die Mindestmasse von braunen Zwergen liegt nach gegenwärtigem Stand der Forschung bei 13 MJ. 633 multiplanetare Systeme haben zwei bis acht nachgewiesene Planeten.[2] Planetensysteme gelten heute in der unmittelbaren Umgebung der Sonne als sicher nachgewiesenes, allgemein verbreitetes Phänomen. Untersuchungen und Messungen des Institut astrophysique de Paris ergaben, dass ein Stern der Milchstraße im Durchschnitt ein bis zwei Planeten hat.[18]

Anzahl entdeckter Exoplaneten pro Jahr

(Stand 06. Juli 2018)

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
1 1 0 0 3 0 0 3 7 0
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
8 11 22 14 31 26 31 33 30 58
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
61 85 117 197 157 189 844 185 1464 148
2018
74

Arten von Exoplaneten[Bearbeiten | Quelltext bearbeiten]

Es gibt noch kein international verbindliches System zur Klassifikation extrasolarer Planeten. So versuchte man eine Klassifikation für die solaren Planeten. Diese wurde dann auf die extrasolaren Planeten übertragen.

Größenvergleich zwischen Jupiter (links) und TrES-4 (rechts), einem der größten bekannten Exoplaneten

Diese Klassifikation wurde in folgende Typen vorgenommen:

Der Saturnmond Iapetus hat z. B. eine Albedo von 0,03 bis 0,5.

Kleine Exoplaneten[Bearbeiten | Quelltext bearbeiten]

Teile dieses Artikels scheinen seit 2014 nicht mehr aktuell zu sein.
Bitte hilf mit, die fehlenden Informationen zu recherchieren und einzufügen.

Masse der bis zum im Diagramm genannten Datum bekannten Exoplaneten über dem Jahr ihrer Entdeckung.[2] Mit den Jahren weitet sich das Massenspektrum besonders nach unten hin, also bei kleineren Massen. (Ohne umstrittene Entdeckungen und Planeten um Pulsare.)

In den vergangenen Jahren wurden zunehmend kleinere Exoplaneten entdeckt, wobei die größten Fortschritte bei der Suche nach kleinen Exoplaneten bisher mithilfe des Kepler-Teleskops erreicht wurden. 2004 lag die Untergrenze der Entdeckbarkeit mit der Radialgeschwindigkeitsmethode bei einer Radialgeschwindigkeit von rund 1 m/s. Ein Planet, der in 1 AE Entfernung um seinen Stern kreist, musste daher eine Masse von ca. 11 Erdmassen haben, um überhaupt entdeckt werden zu können. Mittlerweile wurden jedoch auch masseärmere und kleinere Exoplaneten mit Hilfe der Radialgeschwindigkeit sowie durch die Microlensing- und Transitmethode entdeckt.

Einer der ersten gefundenen kleinen Exoplaneten ist der im April 2007 von Astronomen der Europäischen Südsternwarte (ESO) entdeckte zweite Begleiter des Sterns Gliese 581: Gliese 581 c in einer Entfernung von 20,45 Lichtjahren. Seine Umlaufdauer bzw. Jahreslänge beträgt nur 13 Erdtage. Der Planet hat eine Mindestmasse von fünf Erdmassen. Der Nachweis des Planeten gelang durch einen Spektrographen, der in La Silla, Chile, betrieben wird. Es wurden Rot- und Blauverschiebungen untersucht, die in Abhängigkeit zum Umlauf des Begleiters stehen (Radialgeschwindigkeitsmethode).

Ein weiterer, erst 2009 entdeckter Planet desselben Sternes ist Gliese 581 e. Bei ihm handelt es sich um einen der masseärmsten bekannten Exoplaneten mit einer Mindestmasse von 1,9 Erdmassen und einer Umlaufzeit von nur knapp mehr als 3 Tagen.

Viele andere bisher nachgewiesene kleine Exoplaneten sind sogenannte Supererden:

Gliese 876 d besitzt etwa die 7,5-fache Masse der Erde. Da er in einem sehr geringen Abstand in nur 47 Stunden einmal um seinen Stern kreist, beträgt seine Oberflächentemperatur etwa 200 °C bis 400 °C.

OGLE-2005-BLG-390Lb wurde im Januar 2006 von einer internationalen Forschergruppe mittels Mikrolinseneffekt entdeckt. Dieser Exoplanet ist von der Erde ungefähr 25.000 bis 28.000 Lichtjahre entfernt und hat etwa die fünffache Erdmasse. Er umkreist den Stern OGLE-2005-BLG-390L (einen Roten Zwerg) in einer Entfernung von 2,6 Astronomischen Einheiten einmal in zehn Erdjahren. Aufgrund der geringen Größe und vergleichsweise geringen Strahlung des „Muttersterns“ sowie der großen Entfernung beträgt die Oberflächentemperatur des Planeten nur etwa –220 °C. Die Entwicklung von Lebensformen ist damit höchst unwahrscheinlich.

MOA-2007-BLG-192-Lb wurde im Juni 2008 entdeckt und ist einer der kleinsten bekannten Exoplaneten. Er besitzt die 3,2-fache Erdmasse und befindet sich in einer Entfernung von etwa 3000 Lichtjahren. Neuere Hinweise deuten allerdings darauf hin, dass die Masse seines Muttersterns deutlich höher ist und es sich bei diesem nicht um einen Braunen, sondern um einen Roten Zwerg handelt. Dadurch ergibt sich für den Exoplaneten eine neubestimmte Masse von nur noch 1,4 Erdmassen.

Kepler-37 b ist der derzeit kleinste bekannte Exoplanet (Stand: Februar 2013) und mit einem Durchmesser von etwa 3900 km nur etwas größer als der Erdmond.

Planeten außerhalb der Milchstraße[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Extragalaktischer Planet

Es ist davon auszugehen, dass sich Planeten auch in anderen Galaxien geformt haben. Ihre reproduzierbare Detektion liegt jedoch deutlich außerhalb der heute verfügbaren Möglichkeiten. Es wurden mehrere Mikrolinsen-Ereignisse beobachtet, die möglicherweise auf Exoplaneten zurückzuführen sein könnten.

Exemplarische Exoplaneten und Systeme[Bearbeiten | Quelltext bearbeiten]

2M1207 b[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: 2M1207 b

Der Gasriese 2M1207 b wurde im Jahr 2004 im Orbit des Braunen Zwergs 2M1207 entdeckt und war der erste Exoplanet, der direkt auf optischem Wege wahrgenommen werden konnte und damit die Möglichkeit zu einer direkten spektroskopischen Untersuchung bietet.

CVSO 30[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: CVSO 30

In diesem System wurde sowohl 2012 der sehr eng umlaufende Planet CVSO 30 b (große Bahnhalbachse ca. 0,00838 AE, Umlaufzeit 0,448413 Tage) mit der Transitmethode entdeckt,[19] als auch 2016 der sehr weit entfernte CVSO 30 c (Entfernung zum Zentralstern ca. 660 AE) direkt beobachtet.[20] Somit enthält das System sowohl einen Planeten mit weit engerer Umlaufbahn als Merkur um die Sonne als auch einen erheblich weiter als Neptun von der Sonne entfernten Planeten.

Gliese 1214 b[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: GJ 1214 b

GJ 1214 b (Gliese 1214 b) ist eine im Jahr 2009 entdeckte extrasolare Supererde, die im Sternbild Schlangenträger rund 40 Lichtjahre von der Erde entfernt in 38 Stunden den Roten Zwerg GJ 1214 umkreist, dessen Strahlung 200-mal schwächer ist als diejenige der Sonne. Der Exoplanet GJ 1214 b besitzt eine Atmosphäre, die sich überwiegend aus Wasserdampf zusammensetzt.

HD 20782 b[Bearbeiten | Quelltext bearbeiten]

Der Planet, mit mindestens 2 Jupitermassen wahrscheinlich ein Gasriese, umrundet seinen sonnenähnlichen Zentralstern HD 20782 in 597 Tagen auf einer extrem exzentrischen Bahn (Exzentrizität 0,96), bei der die Entfernung zum Zentralstern zwischen 0,06 und 2,5 AE schwankt.[21]

KELT-9b[Bearbeiten | Quelltext bearbeiten]

Im Zuge eines Transits vor dem Zentralstern KELT-9 konnte in der Atmosphäre seines äußerst heißen Gasplaneten KELT-9b gasförmiges Eisen und Titan nachgewiesen werden.[22]

Kepler-42 b/c/d[Bearbeiten | Quelltext bearbeiten]

Planetensystem von Kepler-42 und das Jupitermondsystem

Im Rahmen der Kepler-Mission gab die NASA Anfang 2012 die Entdeckung des bis dahin (nach Planetengröße) kleinsten Planetensystems bekannt:[23] Der ca. 120 Lichtjahre von der Erde entfernte Rote Zwerg Kepler-42 (seinerzeit als KOI-961 bezeichnet) besitzt drei Gesteinsplaneten, die alle den Stern näher als die habitable Zone umrunden und somit für flüssiges Wasser zu heiße Oberflächen haben.[24] Ihre Radien betragen das 0,78-, 0,73- und 0,57-fache des Erdradius, der kleinste dieser Planeten ist damit ähnlich groß wie der Mars.[25]

Kepler-90[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Kepler-90

Mit Bekanntgabe der Entdeckung des achten Planeten im Dezember 2017 ist das System mit diesem Stand das mit den meisten bekannten Exoplaneten.

Kepler-186f[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Kepler-186f

Kepler-186f ist ein 2012 entdeckter etwa erdgroßer Planet (mit etwa 1,1-fachem Erddurchmesser), dessen Umlaufbahn im äußeren Bereich der habitablen Zone seines Zentralgestirns liegt. Seine Masse ist nicht bekannt, jedoch ist die Annahme plausibel, dass es sich um einen erdähnlichen Planeten (Gesteinsplaneten) handelt.[26]

Kepler-452b[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Kepler-452b

Kepler-452b ist ein 2015 entdeckter etwa erdgroßer Planet (mit etwa 1,6-fachem Erddurchmesser). Bei Kepler-452b handelt es sich um einen erdähnlichen Planeten (Gesteinsplaneten), der sich in der habitablen Zone befindet. Kepler-452b ist der erste der bisher entdeckten Exoplaneten, der um einen Stern der Spektralklasse G2V kreist, zu der auch die Sonne gehört.

Kepler 1647 b[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Kepler-1647b

Dieser etwa jupitergroße Gasriese umkreist einen aus zwei sonnenähnlichen Sternen bestehenden Doppelstern zirkumbinär in etwa 3700 Lichtjahren Entfernung mit einer Umlaufzeit von etwa drei Jahren. Da er in der habitablen Zone liegt, lässt sich spekulieren, dass eventuell vorhandene Monde lebensfreundliche Bedingungen bieten könnten.[27][28]

Proxima Centauri b[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Proxima Centauri b

Der sonnennächste Stern Proxima Centauri wird in seiner habitablen Zone von einem möglicherweise erdähnlichen Planeten umrundet, dessen Entdeckung im August 2016 bekanntgegeben wurde.

Ssc2005-10c[Bearbeiten | Quelltext bearbeiten]

Das Objekt Ssc2005-10c bei dem Stern HD 69830 erfüllt eine „Schäferhundfunktion“ für einen mit dem Spitzer-Weltraumteleskop der NASA entdeckten Asteroidengürtel, ähnlich wie Jupiter für den Asteroidengürtel des Sonnensystems. Dieser Gürtel hat etwa dessen 25-fache Masse und ist dem Stern so nahe wie die Venus der Sonne.

Titawin mit Saffar, Samh und Majriti[Bearbeiten | Quelltext bearbeiten]

Das Doppelsternsystem Titawin besteht aus dem leuchtstärkeren Stern Titawin A und dem Roten Zwerg Titawin B. Der größere der beiden Sterne, Titawin A, hat mindestens drei Planeten:

  • Saffar mit einer 0,71-fachen Jupitermasse bei 4,617 Tagen Umlaufdauer und einem geschätzten Temperaturunterschied zwischen Tag- und Nachtseite von 1400 Grad,
  • Samh mit 2,11-facher Jupitermasse (241,2 Tage Umlaufdauer) – ein Exoplanet, der sehr warm ist, sich aber am inneren Rand der Lebenszone befinden könnte und
  • Majriti (4,61-fache Jupitermasse, 3,47 Jahre Umlaufdauer), ein Planet, der eher kühl ist, sich aber gerade noch am äußeren Rand der Lebenszone befinden könnte.

Das System liegt im Sternbild Andromeda, ist 2,9–4,1 Milliarden Jahre alt, 43,93 Lichtjahre entfernt und die Umlaufzeit von Titawin A und Titawin B beträgt 20.000 Jahre.

Trappist-1[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Trappist-1

Beim 2016 entdeckten Trappist-1-System wurden mittlerweile 7 terrestrische Planeten gefunden, wovon mehrere in der habitablen Zone liegen. Somit sind alle Planeten der Erde vergleichsweise ähnlich. Der Zentralstern allerdings ist ein leuchtschwacher Roter Zwerg mit lediglich etwa 8 % der Sonnenmasse.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Reto U. Schneider: Planetenjäger. Die aufregende Entdeckung fremder Welten. Birkhäuser, Basel u. a. 1997, ISBN 3-7643-5607-3.
  • Geoffrey Marcy, R. Paul Butler, Debra Fischer, Steven Vogt, Jason T. Wright, Chris G. Tinney, Hugh R. A. Jones: Observed Properties of Exoplanets: Masses, Orbits, and Metallicities. In: Shin Mineshige, Shigeru Ida (Hrsg.): Origins: From early universe to extrasolar planets. Proceedings of the 19th Nishinomiya-Yukawa memorial symposium. (November 1 and 2, 2004, Nishinomiya, Japan) (= Progress of Theoretical Physics. Supplement. Nr. 158). Publishing Office Progress of Theoretical Physics – Kyoto University, Kyoto 2005, S. 24–42, online (PDF; 629 kB).
  • Hans Deeg, Juan Antonio Belmonte, Antonio Aparicio (Hrsg.): Extrasolar planets. Cambridge University Press, Cambridge 2008, ISBN 978-0-521-86808-2.
  • Rudolf Dvorak (Hrsg.): Extrasolar planets. Formation, detection and dynamics. Wiley-VCH-Verlag, Weinheim 2008, ISBN 978-3-527-40671-5.
  • John W. Mason (Hrsg.): Exoplanets. Detection, formation, properties, habitability. Springer u. a., Berlin u. a. 2008, ISBN 978-3-540-74007-0.
  • Sven Piper: Exoplaneten. Die Suche nach einer zweiten Erde. Springer, Heidelberg u. a. 2011, ISBN 978-3-642-16469-9.
  • Lisa Kaltenegger: Die Suche nach der zweiten Erde. In: Physik-Journal. Bd. 11, Nr. 2, 2012, ISSN 1617-9439, S. 25–29.
  • Mathias Scholz: Planetologie extrasolarer Planeten. Springer, Heidelberg 2014, ISBN 978-3-642-41748-1.

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Extrasolare Planeten – Sammlung von Bildern, Videos und Audiodateien
 Wiktionary: Exoplanet – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Anmerkungen[Bearbeiten | Quelltext bearbeiten]

  1. Astronomische Bezeichnungen und Abgrenzungen waren oft nicht eindeutig und wurden geändert. Beispiele: Wandelstern versus Fixstern – Der Wandelstern (Planet) ist heute kein Stern mehr (außer die Sonne) und der Fixstern ist nicht mehr fix (feststehend). Auch die ersten Jupitermonde oder Asteroiden wurden damals Planeten genannt. Der bekannteste Fall ist die Abgrenzung der Zwergplaneten von den Planeten mit dem „Opfer“ Pluto.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Michael Perryman: The exoplanet handbook. Cambridge Univ. Press, Cambridge 2011, ISBN 978-0-521-76559-6, Table 1.1 – A selective chronology of exoplanet discoveries, S. 2.
  2. a b c d exoplanet.eu.
  3. Ignas A. G. Snellen, Ernst J. W. de Mooij, Simon Albrecht: The changing phases of extrasolar planet CoRoT-1b. In: Nature. Bd. 459, 28. Mai 2009, S. 543–545, doi:10.1038/nature08045.
  4. Carolin Liefke: Tag und Nacht auf dem Exoplaneten CoRoT-1b. In: Sterne und Weltraum. Oktober 2009, S. 20–22.
  5. Frequenzkamm einsatzbereit für astronomische Beobachtungen. Bei: KosmoLogs.de. 7. September 2008.
  6. Ignasi Ribas, Andreu Font-Ribera, Jean-Philippe Beaulieu: A ~5 M_earth Super-Earth Orbiting GJ 436? The Power of Near-Grazing Transits. In: Astrophysics. 8. März 2008. arxiv:0801.3230.
  7. Exoplanet.eu: GJ 436c. Abgerufen am 8. Juli 2018.
  8. Jason T. Wright, B. Scott Gaudi: Exoplanet Detection Methods. In: Terry D. Oswalt (Hrsg.): Planets, Stars and Stellar Systems. Band 3: Linda M. French, Paul Kalas (Hrsg.): Solar and Stellar Planetary Systems. Springer, Dordrecht u. a. 2013, ISBN 978-94-007-5605-2, S. 489–540, doi:10.1007/978-94-007-5606-9_10, arxiv:1210.2471.
  9. G. Chauvin, A.-M. Lagrange, C. Dumas, B. Zuckerman, D. Mouillet, I. Song, J.-L. Beuzit, P. Lowrance: A Giant Planet Candidate near a Young Brown Dwarf. In: Astronomy and Astrophysics. Bd. 425, Nr. 2, October II 2004, ISSN 0004-6361, S. L29–L32, doi:10.1051/0004-6361:200400056.
  10. Inseok Song, G. Schneider, B. Zuckerman, J. Farihi, E. E. Becklin, M. S. Bessell, P. Lowrance, B. A. Macintosh: HST NICMOS Imaging of the Planetary-mass Companion to the Young Brown Dwarf 2MASSW J1207334–393254. In: The Astrophysical Journal. Bd. 652, Nr. 1, ISSN 0004-637X, S. 724–729, doi:10.1086/507831, (online; PDF; 270 kB).
  11. G. Wuchterl, J. Weiprecht: Der Begleiter von GQ Lupi. Astrophysikalisches Institut und Universitätssternwarte Jena, 2. September 2008, archiviert vom Original am 23. Juli 2009; abgerufen am 17. Dezember 2014.
  12. Ute Kehse: Frischer Nachwuchs für die Exoplaneten. In: Bild der Wissenschaft. 3. April 2008, abgerufen am 19. Oktober 2009.
  13. Hubble directly observes planet orbiting Fomalhaut [HEIC0821]. ESA, 11. Mai 2015, abgerufen am 20. Dezember 2017.
  14. Gemini releases historic discovery image of planetary “first family”. Gemini-Observatorium, 9. November 2008, abgerufen am 20. Dezember 2017.
  15. Naming of exoplanets. IAU, abgerufen am 20. Dezember 2017.
  16. NameExoWorlds: An IAU Worldwide Contest to Name Exoplanets and their Host Stars. IAU, 9. Juli 2014, abgerufen am 9. Oktober 2014 (englisch).
  17. Exoplanet Criteria for Inclusion in the Archive. NASA Exoplanet Archive, abgerufen am 15. August 2018.
  18. Planeten so weit das Auge reicht. Abgerufen am 11. Januar 2012.
  19. Planet CVSO 30 b. exoplanet.eu, abgerufen am 18. Dezember 2017.
  20. Planet CVSO 30 c. exoplanet.eu, abgerufen am 18. Dezember 2017.
  21. Exoplanet mit dem exzentrischsten Orbit entdeckt. scinexx, 21. März 2016, abgerufen am 22. März 2016.
  22. Ultraheißer Planet besitzt Eisen und Titan orf.at, 16. August 2018, abgerufen 16. August 2018.
  23. Kepler Discovers a Tiny Solar System. NASA, 11. Januar 2012, archiviert vom Original am 17. Januar 2012; abgerufen am 15. April 2017.
  24. Govert Schilling: Kepler Spies Smallest Alien Worlds Yet. Science, 11. Januar 2012, archiviert vom Original am 24. April 2012; abgerufen am 15. April 2017.
  25. KOI-961: A Mini-Planetary System. NASA, 11. Januar 2012, abgerufen am 15. April 2017.
  26. NASA’s Kepler Discovers First Earth-Size Planet In The ‘Habitable Zone’ of Another Star. Abgerufen am 17. April 2014.
  27. Veselin B. Kostov u. a.: Kepler-1647b: the largest and longest-period Kepler transiting circumbinary planet. 19. Mai 2016, arxiv:1512.00189v2.
  28. Größter Exoplanet mit zwei Sonnen entdeckt. scinexx, 14. Juni 2016, abgerufen am 20. Juni 2016.