Zauberwürfel

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Rubiks Würfel)
Wechseln zu: Navigation, Suche
Dieser Artikel behandelt den 3×3×3-Zauberwürfel, auch bekannt als Rubik’s Cube. Zu anderen Zauberwürfeln siehe Drehpuzzle#N×N×N-Drehpuzzles.
Zauberwürfel in Grundstellung
Zauberwürfel mit teilweise gedrehter Seite
Bewegung des Zauberwürfels

Der Zauberwürfel (manchmal auch wie im englischsprachigen Raum Rubik’s Cube, Rubiks Würfel, genannt) ist ein Drehpuzzle, das vom ungarischen Bauingenieur und Architekten Ernő Rubik erfunden wurde und 1980 mit dem Sonderpreis Bestes Solitärspiel des Kritikerpreises Spiel des Jahres ausgezeichnet wurde. Es erfreute sich insbesondere Anfang der 1980er Jahre großer Beliebtheit.

Beschreibung[Bearbeiten | Quelltext bearbeiten]

Bei einem Zauberwürfel in Standardgröße handelt es sich um einen Würfel mit einer Kantenlänge von 57 mm gemessen an den Mittelachsen. Es gibt allerdings auch größere oder kleinere Varianten wie z. B. mit einer Kantenlänge von 54,4 mm für kleinere Hände oder das einhändige Lösen. Der Würfel ist in der Höhe, Breite und Tiefe in jeweils drei Lagen unterteilt, die sich durch 90-Grad-Drehungen um ihre jeweilige Raumachse zur Deckung bringen lassen. Dadurch können Position und Lage von 20 der insgesamt 26 Steine fast beliebig verändert werden. Auf die nach außen sichtbaren Flächen der Steine sind kleine Farbflächen geklebt oder die Steine selbst sind gefärbt. In der Grundstellung sind die Steine so geordnet, dass jede Seite des Würfels eine einheitliche, aber von Seite zu Seite unterschiedliche Farbe besitzt. Der Standardwürfel ist in der Grundfarbe schwarz und die Farbgebung der Flächen entspricht weiß gegenüber von gelb, blau gegenüber von grün und rot gegenüber von orange. Die Orientierung der Farben beim Betrachten des weiß-blau-roten Ecksteins entspricht weiß oben, blau rechts und rot links. Bei einem Würfel in der Grundfarbe weiß wird die weiße Fläche oftmals durch eine schwarze getauscht.

Ziel ist es für gewöhnlich, den Würfel wieder in seine Grundstellung zu bewegen, nachdem zuvor die Seiten in eine zufällige Stellung gedreht wurden. Auf den ersten Blick erscheint diese Aufgabe außerordentlich schwierig, jedoch wurden schon frühzeitig Strategien entwickelt, deren Kenntnis ein relativ leichtes Lösen gestattet.

Aufbau und Komponenten[Bearbeiten | Quelltext bearbeiten]

Der Zauberwürfel hat insgesamt 26 einzelne Steine:

  • Mittelstein: Die sechs Steine in der Mitte der Würfelflächen sitzen auf dem Achsenkreuz im Inneren des Würfels, und besitzen daher zueinander konstruktionsbedingt immer dieselbe relative Lage. Die Farbe des Mittelsteines bestimmt, welche anderen Steine auf diese Seite gehören und welche Orientierung sie haben müssen. Mittelsteine sind einfarbig.
  • Kantenstein: Die zwölf Kantensteine verbinden je zwei angrenzende Flächen und werden von den Mittelsteinen der beiden Flächen gehalten. Kantensteine haben zwei Farben.
  • Eckstein: Die acht Ecksteine verbinden je drei angrenzende Flächen in den Ecken. Sie werden von den drei benachbarten Kantensteinen in Position gehalten und haben jeweils drei Farben.

Geschichte[Bearbeiten | Quelltext bearbeiten]

In der Sendung Der große Preis erklärte der Erfinder, er habe durch ein dreidimensionales Geduldsspiel seinen Studenten eine Möglichkeit geben wollen, ihr räumliches Denkvermögen zu trainieren.

Nachdem Rubik für den Würfel am 28. Oktober 1976 das ungarische Patent Nr. 170062 erteilt worden war, hielt der Würfel im Dezember 1977 Einzug in die „kapitalistische Welt“, als ein Exemplar des Würfels der in Großbritannien ansässigen Firma Pentangle zugesandt wurde. Diese Firma erwarb daraufhin die Lizenz zum Vertrieb des Würfels in Großbritannien. Die Regierung in Ungarn vergab allerdings 1979 die weltweiten Verkaufsrechte für den Würfel an die US-amerikanische Firma Ideal Toy Corporation (in Europa auch unter Arxon bekannt). Darin waren vertragswidrig auch die Rechte für das Vereinigte Königreich enthalten. Ideal Toy Corporation erlaubte Pentangle den Verkauf des Würfels an Geschenk-, aber nicht an Spielzeuggeschäfte. Ab dem 2. Juni 1980 war er in der Bundesrepublik erhältlich.

1981 hatte die Nachfrage nach dem mechanischen Geduldsspiel ihren Höhepunkt. Ideal Toy Corporation konnte die Nachfrage nicht befriedigen, was es fernöstlichen Billigprodukten ermöglichte, den Markt zu überschwemmen. Insgesamt wurden wohl etwa 160 Millionen Würfel allein bis zum Höhepunkt des Booms verkauft. Anfang 1982 brach die Nachfrage für den Würfel ein und mit ihr auch die Nachfrage nach vielen anderen Geduldsspielen.

Ernő Rubik war nicht der erste, der sich mit dem Thema eines Spiels dieser Art beschäftigte. Schon 1957 entwickelte der Chemiker Larry Nichols einen ähnlichen Würfel, der allerdings nur aus 2×2×2 Teilen bestand und durch Magnete zusammengehalten wurde. Er ließ seinen Entwurf im Jahre 1972 patentieren. 1984 gewann Nichols eine Patentklage gegen die Firma, die den Rubik’s Cube in den USA vertrieb. Allerdings wurde dieses Urteil 1986 teilweise aufgehoben, so dass es nur noch den 2×2×2 großen Pocket Cube, engl. f. Taschenwürfel, betraf.[1]

Auf der CeBIT 2009 wurde auch eine digitale Version des Würfels vorgestellt, die mit Leuchtdioden und Touchfeldern ausgestattet ist.

Lösungsstrategie für den Zauberwürfel[Bearbeiten | Quelltext bearbeiten]

Lösen des 3×3×3 Würfels innerhalb von 26,59 Sekunden mit der Fridrich-Methode

Strategien, die mit möglichst wenigen Bewegungen des Würfels auskommen, sind meist nur mit Hilfe eines Computers oder umfangreicher Stellungstabellen realisierbar. Andere, leichter zu merkende Strategien kommen mit wenigen Basiszügen aus, erfordern aber im Allgemeinen eine höhere Zahl von Bewegungen.

Algorithmen zur Lösung des Würfels werden mittels verschiedener Notationen aufgeschrieben. Der geläufigste Lösungsweg, bei dem die drei Ebenen des Würfels nacheinander geordnet werden, wird als „Layer by Layer“-Methode bezeichnet. Sie ähneln der publizierten Lösung, die der Spiegel (Nr. 4/1981) veröffentlichte. Im Bereich Speedcubing, wo es besonders auf die Schnelligkeit ankommt, werden zur Lösung des Zauberwürfels andere Varianten angewendet, zu nennen sind Jessica-Fridrich-Methode oder die nach Lars Petrus.

Grafische Notation[Bearbeiten | Quelltext bearbeiten]

Grafische Notationsform für den Zauberwürfel

Alternativ dazu verwenden manche Anleitungen auch grafische Notationsformen, entweder als dreidimensionale Würfeldarstellungen oder als 3×3-Aufsicht der Vorderseite mit Pfeilen, die die Drehung der Würfelflächen angeben. Letztere haben den Nachteil, dass Operationen der (von vorne gesehen) mittleren und hinteren Würfelebene nur schwer darstellbar sind, z. B. durch eine zusätzliche Abwicklung der Oberseite. Ein Vorteil dieser Notation ist allerdings, dass sie Drehungen der anderen Mittelebenen als Einzelzüge darstellen kann.

Buchstabennotation[Bearbeiten | Quelltext bearbeiten]

Um Zugkombinationen für den Würfel zu notieren, wird jeder Aktion ein Buchstabe zugeordnet.

Abkürzung Seite
dt. engl.
V F(ront) vorne
H B(ack) hinten
R R(ight) rechts
L L(eft) links
O U(p) oben
U D(own) unten
x Drehung des ganzen Würfels beim Betrachten der rechten Seite
y Drehung des ganzen Würfels beim Betrachten der oberen Seite
z Drehung des ganzen Würfels beim Betrachten der vorderen Seite
M Drehung der Ebene zwischen L und R. Richtung wie Left
S Drehung der Ebene zwischen F und B. Richtung wie Front
E Drehung der Ebene zwischen Up und Down. Richtung wie Down

Ein Buchstabe bedeutet dabei stets eine Drehung der Seite um 90° im Uhrzeigersinn, ein ′ oder −1 gegen den Uhrzeigersinn relativ zur gerade betrachteten Seite. So ist beispielsweise die Drehung der Unterseite um 90° im Uhrzeigersinn (D) genau entgegengesetzt zur Drehung der Oberseite um 90° im Uhrzeigersinn (U). Eine 2 steht für eine Drehung der Ebene um 180°. Klein geschriebene Buchstaben, die sich auf Seiten beziehen, bedeuten die Drehung von zwei Ebenen von der entsprechenden Seite aus betrachtet; für r z. B. die rechte und dazu parallele mittlere Ebene, was aber nur für größere Würfel benötigt wird. Manchmal werden noch weitere Buchstaben für Mittelschichtzüge verwendet. Um Fingertechniken oder Solves zu beschreiben, wird manchmal auch 2′ verwendet, um eine Drehung der rechten Seite um 180° gegen den Uhrzeigersinn zu verdeutlichen. Um sich Zugfolgen besser merken zu können, werden manchmal auch mehrere Züge in Klammern gesetzt.

Beispiel: Die folgende Kombination kippt zwei Kantensteine und lässt alle übrigen unverändert:

K1 = B′ R2 B2 R B′ R′ B′ R2 F D B D′ F′

Optimale Lösungen[Bearbeiten | Quelltext bearbeiten]

Der „Superflip“ ist die bekannteste Stellung, die nicht in weniger als 20 Zügen (Viertel- und halbe Drehungen) gelöst werden kann
Eine der drei bekannten Stellungen, die nicht in weniger als 26 Zügen (Vierteldrehungen) gelöst werden können

Um den Zauberwürfel aus einer gegebenen Stellung in die ursprüngliche Ausgangsstellung zu überführen, benötigt man eine bestimmte Mindestanzahl an Zügen. Ein Weg von gegebener nach Ausgangsstellung, der nur aus dieser Zahl an Schritten besteht, stellt somit eine optimale Lösung dar. (Zwischen den beiden Stellungen kann es mehrere zwar verschiedene, aber gleich kurze Wege geben.)

Die Methode, von einer beliebigen Stellung aus einen solchen kürzesten Weg zu finden, wird als Gottes Algorithmus (engl. God’s Algorithm) bezeichnet. Diese Bezeichnung stammt von dem englischen Gruppentheoretiker John Conway oder einem seiner Kollegen in Cambridge.[2] In Anlehnung daran wird diejenige Anzahl Züge, die man mindestens zur Lösung des Zauberwürfels aus irgendeiner Stellung heraus benötigt – also die Länge der optimalen Wege für die „am weitesten“ von der Ausgangsstellung entfernten Stellungen –, Gottes Zahl genannt.

Es gibt zwei Möglichkeiten, die Würfelbewegungen zu zählen:

  • Vierteldrehungen (±90°) und Halbdrehungen (180°) von Seitenflächen werden als ein einzelner Zug betrachtet
  • Es werden die Vierteldrehungen einzeln gezählt.

Zählt man nur Vierteldrehungen, so kann man alleine durch Bewerten der Stellung des Würfels schon sagen, ob eine gerade oder ungerade Anzahl an Drehungen zum Lösen von Nöten ist.

Den ersten Algorithmus zum Finden einer optimalen Lösung formulierte Richard E. Korf, der 1997 zeigte, dass die durchschnittliche optimale Lösung 18 Züge (mit halben Drehungen) benötigt.[3] Er ging außerdem davon aus, dass nie mehr als 20 Züge erforderlich sind, jedoch konnte er das nicht beweisen. Bereits 1992 hatte Dik T. Winter eine Stellung (den sogenannten Superflip) gefunden, die 20 Züge benötigt. Den Beweis, dass diese Stellung tatsächlich nicht in weniger Zügen zu lösen ist, erbrachte Michael Reid im Jahr 1995.

Im März 2008 konnte der amerikanische Informatiker Tomas Rokicki mit gewaltigem Rechenaufwand zeigen, dass die Anzahl der Züge, die man bei richtiger Strategie maximal dazu benötigt, einen Rubik’s Cube aus jeder beliebigen Stellung in seine Ausgangslage zurückzudrehen, höchstens 25 sein kann,[4] was er im August durch verbesserte Computer-Unterstützung (durch den Software-Ingenieur John Welborn von Sony Pictures[5]) auf 22 reduzieren konnte.[6][7]

Im Juli 2010 bewies Tomas Rokicki zusammen mit Morley Davidson, John Dethridge und Herbert Kociemba die Vermutung, dass nie mehr als 20 Züge notwendig sind.[8] Es wurden 12.000.000 Stellungen gefunden, die nicht in weniger als 20 Zügen gelöst werden können. Vermutlich gibt es insgesamt 490.000.000 solche Stellungen.[6]

Im August 2014 erfolgte dann die Berechnung, wenn man ausschließlich in Vierteldrehungen zählt. Zur Lösung sind nie mehr als 26 Vierteldrehungen notwendig. Die Stellung, die in nicht weniger als 26 Zügen gelöst werden kann, wurde bereits 1998 gefunden. Bei einem Würfel, der in dieser Maximalstellung ist, sind alle Ecken richtig platziert, aber die Kanten gedreht. Außerdem sind zwei (der drei) Paare von gegenüberliegenden Mitten getauscht.[9] Damit sind drei mögliche Maximalstellungen bekannt, die sich aber mathematisch nicht unterscheiden. Der Beweis, dass dies die einzigen sind, steht noch aus.

Mathematik[Bearbeiten | Quelltext bearbeiten]

Der Würfel als mathematische Gruppe[Bearbeiten | Quelltext bearbeiten]

Der Würfel kann als mathematische Gruppe aufgefasst werden.

Dafür wird jede Stellung als eine Verknüpfung der sechs möglichen Basis-Permutationen betrachtet.

Alle möglichen Permutationen (Stellungen) bilden die Menge . Jede Stellung ist durch eine Verknüpfung der sechs Grundpermutationen zu erreichen, die mit der zweistelligen Verknüpfung verbunden werden.

Außerdem existiert sowohl ein neutrales Element, die Grundstellung (entspricht einer „Nulloperation“ ausgeführt auf dem gelösten Würfel), denn für alle möglichen Permutationen (Gruppenelemente) gilt , als auch ein inverses Element, da zu jeder Permutation ein Element mit existiert, zum Beispiel oder . Weiterhin gilt für alle .

Das Tripel bildet daher eine Gruppe im Sinne der Algebra. Diese ist nicht kommutativ, da die Verknüpfung nicht kommutativ ist ().

Lösungen des Würfels[Bearbeiten | Quelltext bearbeiten]

Sei jetzt eine Permutation gegeben (ein verdrehter Würfel), so besteht die Aufgabe darin, eine endliche Folge von Permutationen aus der Menge zu finden, die genau diese Permutation erzeugt:

Die Lösung ist nicht eindeutig, das heißt, es gibt viele Lösungen, von denen die kürzeste gesucht ist. Der Durchmesser der Gruppen, also die maximale Länge einer Permutation, mit der alle Elemente aus erreicht werden, ist für 20.

Im Juli 2010 berechneten die drei US-Amerikaner Tomas Rokicki, Morley Davidson und John Dethridge und der Darmstädter Herbert Kociemba, dass jede Stellung in höchstens 20 Zügen (mit Halbdrehungen) gelöst werden kann.[6] Im August 2014 zeigten Tomas Rokicki und Morley Davidson, dass höchstens 26 Züge notwendig sind, wenn als Zug nur Vierteldrehungen erlaubt sind (Halbdrehungen sind dann zwei Züge).[9]

Ordnung der Gruppe G[Bearbeiten | Quelltext bearbeiten]

Die Ordnung einer Gruppe entspricht der Mächtigkeit ihrer Trägermenge . Da es nur eine endliche Zahl möglicher Stellungen gibt, entspricht diese der Anzahl der möglichen Stellungen:

= [10]

Diese ergeben sich aus

  • 8 Stellen, an denen sich die Eckwürfel befinden können (8!),
  • 3 Drehpositionen, die jeder Eckwürfel einnehmen kann (38),
  • 12 Stellen, auf die sich die Kantenwürfel verteilen (12!),
  • 2 Drehpositionen, die jede Kante einnehmen kann (212).

Dabei bezeichnet die Fakultät.

Der Nenner ergibt sich aus drei Bedingungen, die gelten, wenn der Würfel verdreht, aber nicht auseinandergenommen wird:

  • Sieben der acht Eckwürfel lassen sich nach Belieben orientieren, während die Orientierung des achten dadurch erzwungen wird (3)
  • Elf der zwölf Kantenwürfel lassen sich nach Belieben orientieren, während die Orientierung des zwölften dadurch erzwungen wird (2)
  • Es lassen sich weder allein zwei Eckwürfel vertauschen, noch lassen sich allein zwei Kanten vertauschen. Die Anzahl der paarweisen Zweiertäusche muss immer gerade sein (2).

Untergruppen[Bearbeiten | Quelltext bearbeiten]

Wenn man die Menge der erzeugenden Permutationen begrenzt, entstehen Trägermengen mit geringerer Mächtigkeit, die Teilmengen von sind. Diese Untergruppen sind für das Lösen des Würfels mit Computern von entscheidender Bedeutung.

Speedcubing[Bearbeiten | Quelltext bearbeiten]

Hauptartikel → Speedcubing

Einige Leute, die sich Speedcuber nennen, haben Strategien gefunden, die es ihnen ermöglichen, mit 45 bis 60 Bewegungen einen beliebig verdrehten Würfel zu lösen. Beim Speedcubing, also dem Lösen auf Zeit, kommt es darüber hinaus aber auch auf Fingerfertigkeit und das Verinnerlichen einer hohen Anzahl von vorgefertigten Zugfolgen an. Im Speedcubing werden Landes-, Kontinental- und Weltmeisterschaften von der World Cube Association (WCA) ausgetragen.[11]

Normales Lösen[Bearbeiten | Quelltext bearbeiten]

Die erste Weltmeisterschaft, veranstaltet vom Guinness-Buch der Rekorde, fand am 13. März 1981 in München statt. Die Würfel waren 40-mal verdreht und mit Vaseline eingerieben. Gewinner der Meisterschaft war Jury Fröschl aus München mit einer Rekordzeit von 38 Sekunden.

Der aktuelle Weltrekord für einen 3×3×3-Würfel, aufgestellt bei River Hill Fall 2015 von Lucas Etter, liegt bei 4,90 Sekunden.[12][13]

Einhändiges Lösen (One-handed)[Bearbeiten | Quelltext bearbeiten]

Der Rubik’s Cube ist das einzige Drehpuzzle, für das auch Wettkämpfe im einhändigen Lösen von der WCA veranstaltet werden. Wenn im Löseprozess beide Hände den Cube berührt haben (das muss nicht gleichzeitig passieren) ist der Versuch DNF (Did not finish). In der Inspektionsphase dürfen aber beide Hände den Cube berühren.

Der aktuelle Weltrekord, aufgestellt bei Canberra Autumn 2015 von Feliks Zemdegs, liegt bei 6,88 Sekunden.[12]

Blindfold Cubing[Bearbeiten | Quelltext bearbeiten]

Demonstration: Blindlösen des 3×3×3-Würfels in 49,83 Sekunden

Eine andere bekannte Disziplin ist das sogenannte Blindfold Cubing. Dabei prägt man sich zunächst den verdrehten Zauberwürfel ein und löst ihn dann mit verbundenen Augen, ohne ihn ein weiteres Mal zu sehen.

Der aktuelle Weltrekord, aufgestellt bei China Championship 2015 von Kaijun Lin, liegt bei 21,05 Sekunden.[12]

Multiple Blindfold Cubing[Bearbeiten | Quelltext bearbeiten]

Zudem gibt es auch das Multiple Blindfold Cubing, eine Steigerung des Blindfold Cubings. Dabei prägt man sich so viele Würfel wie möglich hintereinander ein, um sie danach, ohne sie noch einmal zu sehen, blind zu lösen. Zur Lösung werden hier meist Methoden eingesetzt, die möglichst wenige andere Steine pro Schritt ändern. Ähnlich wie bei Gedächtnissport merkt man sich die Schrittfolge mit Hilfe eines Memoriersystems, um sie später mit verbundenen Augen in die entsprechenden Fingerbewegungen umzusetzen.

Der aktuelle Weltrekord, aufgestellt bei SLS Swierklany 2013 von Marcin Kowalczyk, liegt bei 41/41 in 54:14 Minuten.[12]

Lösen mit möglichst wenigen Zügen (Fewest Moves)[Bearbeiten | Quelltext bearbeiten]

In dieser Disziplin versuchen die Teilnehmer den Würfel in möglichst wenig Zügen zu lösen. Dafür haben sie nach offiziellen WCA-Regeln 60 Minuten Zeit.[14] Danach müssen sie eine maximal 80 Züge umfassende Lösung erarbeitet haben, welche sie dem sogenannten Judge zur Prüfung übergeben.

Der Weltrekord von 19 Zügen wurde bei Irvine Fall 2015 von Tim Wong, bei Cubelonia 2016 von Marcel Peters und bei PSU Open 2016 von Vladislav Ushakov aufgestellt.[12]

Maschinelle Lösung[Bearbeiten | Quelltext bearbeiten]

Es gibt eine Reihe von Maschinen, die den Würfel mittels Bilderkennung und automatisierter Mechanik lösen können. So wurde der menschliche Rekord im Jahr 2011 erstmals von einer Robotik unterboten: CubeStormer 2 löste den Würfel in 5,27 Sekunden – der zu dieser Zeit schnellste Mensch benötigte 5,66 Sekunden.[15][16] 2014 löste CubeStormer 3 mittels eines Galaxy S4 und acht Lego Mindstorms EV3 den Würfel in 3,25 Sekunden.[17]

Im Januar 2016 wurde ein Video veröffentlicht, in dem ein Roboter den Zauberwürfel in 1,047 Sekunden lösen konnte. Weitere Lösungsversuche blieben beständig unter 1,2 Sekunden. Der Roboter analysiert den Würfel mit vier USB-Webcams, gedreht wird er mit Hilfe von Schrittmotoren.[18][19]

Muster erstellen[Bearbeiten | Quelltext bearbeiten]

Neben dem üblichen Lösen des Zauberwürfels ist eine weitere beliebte Spielart, mit dem Zauberwürfel regelmäßige und unregelmäßige Muster zu erstellen.

Bei vielen Mustern werden nur Würfel der gegenüber liegenden Seiten vertauscht (z. B. „Pepita-Grundmuster“, „Vierfach Kreuzmuster“, „Sechsfach T-Muster“) bei anderen Mustern nur die Würfel von jeweils drei aneinander liegenden Seiten (z. B. „Mittelpunkt-Muster“, „Sechsfach Kreuzmuster“, „Würfel-im Würfel“ (auch „2 × 2“ in „3 × 3 × 3“), „Umlaufender Wurm“ / „Schlange“).

Darüber hinaus gibt es farblich gemischte Muster wie beispielsweise alle zwölf Kantenwürfel in ihrer Ausgangsstellung einfach gekippt positioniert oder eine umlaufende Diagonale durch jeweils zwei farblich unterschiedliche „Dreier-Ecken“.

Prinzipiell sind beim Erstellen von Mustern drei Vorgehensweisen zu unterscheiden:

  1. Muster mit einer speziellen Zugfolge oder einer Kombination mehrerer Zugfolgen erstellen - ausgehend von einem Würfel in Original-Ausgangsstellung mit sechs Farbflächen.
  2. Muster mit einer speziellen Zugfolge oder einer Kombination mehrerer Zugfolgen erstellen - ausgehend von einem bereits in einer Musterstellung gedrehten Würfel („Muster-Wechsel“).
  3. Muster nach Vorlage oder eigener Vorstellung mit den bekannten Zugfolgen erstellen - ausgehend von einem Würfel in Original-Ausgangsstellung mit sechs Farbflächen oder einem zufällig verdrehten Würfel.

Das Phänomen bei einigen erdachten Mustern ist, dass sich bedingt durch die Konstruktion des Würfels nicht alle Muster tatsächlich realisieren lassen. Häufig ist zum Schluss ein Eckwürfel an seiner Position nicht in der richtigen Stellung oder es sind zwei Kantenwürfel an falscher Position (Beispiele: sechsfach umlaufende Diagonale, diverse Pepita-Varianten bei nebeneinander liegenden Seiten). Bei anderen Mustern benötigte man eine andere Kombination der Farbflächen der Eck- oder Kantenwürfel oder ein Kantenwürfel würde doppelt benötigt.

Eine weitere Spielart in diesem Zusammenhang ist es, aus einem im Muster gedrehten Würfel mit nur wenigen Zugfolgen wieder die Original-Ausgangsstellung des Zauberwürfels mit den sechs Farbflächen herzustellen.

Musterbeispiele[Bearbeiten | Quelltext bearbeiten]

Varianten[Bearbeiten | Quelltext bearbeiten]

Es gibt einige Varianten dieses mechanischen Puzzles. Etwas schwieriger ist ein mit Bildern bedruckter Würfel, da durch die allgemein bekannten Lösungsstrategien zwar die Farbflächen an der richtigen Stelle zu liegen kommen, jedoch die mittleren Flächen nicht immer in der richtigen Orientierung. So gibt es einfachere Würfel, die aus nur zwei Ebenen in jeder Raumrichtung bestehen wie der Pocket Cube, und kompliziertere Varianten, die aus vier Ebenen (Rubik’s Revenge, auch bekannt als Rubiks Rache beziehungsweise Rubik’s Master Cube), fünf Ebenen (Professor’s Cube oder 5×5×5 Cube bzw. Rubiks Wahn) oder zwei und mehr versetzt ineinander integrierten Würfeln (Rubik’s Fusion) bestehen. Auch gab es einen 2×3×3-Quader: Rubiks Magisches Domino und einen Dodekaeder: (Megaminx). Ferner gibt es Rubik-Puzzles in Tonnen- oder Pyramidenform und Bälle (z. B. Masterball[20]), ebenfalls in verschiedenen Schwierigkeitsstufen.

Bereits seit Mitte der 1980er Jahre gibt es den Fisher Cube.

2005 wurde erstmals ein Würfel mit sechs Ebenen präsentiert. Der zugrundeliegende Mechanismus erlaubt auch Würfel mit bis zu elf Ebenen. Diese müssen aber tonnenförmig – die Mitten der Flächen nach außen – verzerrt werden, damit die Befestigung der Ecksteine noch vollständig innerhalb des Würfels liegt. Diese Verzerrung zusammen mit der notwendigen Größe und dem Gewicht werden dem Spieler einiges an Geschick bei der Handhabung abverlangen. Die Lösungsmethoden für diese großen Würfel benötigen keine Züge, die nicht schon vom vier oder fünf Ebenen umfassenden Würfel her bekannt sind.

Seit Juni 2008 sind auch 6×6×6- und 7×7×7-Zauberwürfel auf dem Markt. Mittlerweile gibt es auch größere Zauberwürfel, die offizielle Meisterschaften werden aber seit Februar 2009 nur für maximal 7×7×7-Zauberwürfel ausgetragen.[21][22]

Ein wegen seiner sternförmigen Form sehr beliebtes mechanisches Puzzle ist der 4D8-Zauberwürfel. Diese ist abgeleitet von einem Sterntetraeder, (Stella Octangula) auch Keplerstern genannt. Allerdings sind dabei seine Spitzen abgeschnitten, es verbleiben sogenannte Pyramidenstümpfe (Truncated Pyramids).

Bei Computerprogrammen, die den Zauberwürfel simulieren, lassen sich auch noch mehr Ebenen einstellen.

Beim Rubiks Kalender-Cube (Datumswürfel) sind die Flächen mit Zahlen und Texten versehen, aus denen sich auf der Frontfläche das aktuelle Datum mit Wochentag, Monat und Tag zusammenstellen lässt.

Infolge des Booms in den 1980er Jahren tauchten auch mechanische Puzzles auf, denen eine andere Mechanik zu Grunde lag, beispielsweise Rubik’s Magic, die Teufelstonne, Back to Square One, Rubik’s Triamid, Rubik’s Clock, Alexander’s Star oder der Zauberturm. Das mechanisch anspruchsvollste Puzzle dieser Art ist wohl das Dogic in Form eines Ikosaeders (Zwanzigflächner).

Trivia[Bearbeiten | Quelltext bearbeiten]

  • Google ehrte den Zauberwürfel anlässlich seines 40. Geburtstags mit einem interaktiven Doodle.[23]
  • Bei den Simpsons kommt der Zauberwürfel mehrfach vor.[24] Zwei Beispiele, die für die Simpsons nicht glücklich verlaufen: In der Episode Der Ernstfall versucht sich Homer Simpson vor der bevorstehenden Kernschmelze an die Einweisung in sein Schaltpult im Atomkraftwerk zu erinnern. Damals hat er sich anstatt zuzuhören, mit dem Zauberwürfel beschäftigt. In der Episode Der total verrückte Ned holt Marge Simpson den Zauberwürfel heraus, während sich die Familie während eines Hurrikans im Keller aufhält, um sich die Zeit zu vertreiben. Dabei gerät die ganze Familie in einen Streit, so dass Marge enttäuscht den Würfel wieder zurücklegt mit den Worten: „Jetzt weiß ich wieder, warum ich ihn hierher gelegt habe.“
  • In der 80er Show mit Oliver Geissen ist ein überdimensionales Fragment des Würfels als typisches Symbol der 1980er Jahre Untergestell des Couchtisches, an dem die Gäste und Oliver Geissen sitzen.
  • In der Sendung Wer wird Millionär? vom 7. Dezember 2015 wurde für eine Million Euro gefragt: „Aus insgesamt wie vielen Steinchen besteht der klassische von Ernő Rubik erfundene Zauberwürfel?“ Kandidat Leon Windscheid beantwortete die Frage mit „26“ richtig und wurde somit der zehnte reguläre Millionär der Sendung.[25]
  • In der Sitcom The Big Bang Theory sieht man gelegentlich einen Papiertuch-Spender in der Form eines übergroßen Zauberwürfels.[26]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Matthias Stolz: Die Rückkehr des Zaubers. In: Die Zeit, Nr. 4/2009, S. 10–15 (Leben, Über das Comeback des Zauberwürfels, Personen und den Erfinder des Zauberwürfels. Fotos, Interviews).
  • Schrei Hurra! Schmeiß ’ne Runde! In: Der Spiegel. Nr. 4, 1981 (online Lösung).

Einführungen und Anleitungen[Bearbeiten | Quelltext bearbeiten]

Mathematik[Bearbeiten | Quelltext bearbeiten]

Die folgenden Titel befassen sich mit den mathematischen Eigenschaften des Zauberwürfels, enthalten aber auch Anleitungen, die u. U. leichter nachzuvollziehen sind als die informellen Einführungen.

  • David Singmaster: Notes on Rubik’s Magic Cube. Enslow, Hillside NJ 1981. (klassische Studie, die 5. und letzte Auflage hat den doppelten Umfang der ersten aus dem Jahr 1979)
  • Alexander H. Frey jr., David Singmaster: Handbook of Cubik Math. Enslow, Hillside NJ 1982.
  • Wolfgang Hintze: Der ungarische Zauberwürfel. Deutscher Verlag der Wissenschaften VEB, Berlin OST 1982 (teilweise angelehnt an Singmasters Buch).
  • Christoph Bandelow: Einführung in die Cubologie. Vieweg, Braunschweig / Wiesbaden 1981, ISBN 3-528-08499-5.
  • Christoph Bandelow: Inside Rubik’s Cube and Beyond. Birkhäuser, Basel / Boston 1982. (erweiterte englische Fassung des Vorgenannten)
  • Ernő Rubik, Tamas Varga, Gerzson Keri, Gyorgy Marx, Tamas Vekerdy: Rubik’s Cubic Compendium. English translation by A. Buvös Kocka, with an afterword by David Singmaster. Oxford University Press, London 1987 (vom Erfinder des Zauberwürfels).
  • David Joyner: Adventures in Group Theory: Rubik’s Cube, Merlin’s Machine, and Other Mathematical Toys. Johns Hopkins University Press, Baltimore MD 2002 (eine Einführung in die Gruppentheorie anhand des Zauberwürfels).

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Zauberwürfel – Album mit Bildern, Videos und Audiodateien
 Wiktionary: Zauberwürfel – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Wikibooks: Zauberwürfel – Lern- und Lehrmaterialien

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. digital-law-online.info Gerichtsurteil zur Patentverletzung
  2. Jerry Slocum: The Cube. The Ultimate Guide to the World’s Bestselling Puzzle. Secrets – Stories – Solutions. Black Dog & Leventhal, New York 2009, S. 26.
  3. Korf: Optimal Solutions to Rubik’s Cube. (PDF; 122 kB)
  4. arxiv:0803.3435
  5. Des Würfels letztes Rätsel. In: Der Spiegel. Nr. 23, 2010, S. 103 (online). Homepage von Rokicki
  6. a b c God’s Number is 20
  7. Rokicki: Twenty-two moves suffice for Rubik’s cube. (Memento vom 22. Dezember 2008 im Internet Archive) In: Mathematical Intelligencer, 2010, Nr. 1, S. 33
  8. The Diameter of the Rubik’s Cube Group Is Twenty. In: SIAM J. Discrete Math., 27(2), S. 1082–1105, doi:10.1137/120867366
  9. a b God’s Number is 26 in the Quarter-Turn Metric
  10. Rubik’s Cube. Universität Mannheim, Seminar Computeralgebra mit GAP
  11. Liste der zukünftigen Competitions auf der Website der WCA
  12. a b c d e Liste aller Disziplinen und Rekorde auf der Website der World Cube Association
  13. youtube.com, abgerufen am 23. November 2015
  14. Offizielle WCA-Regeln
  15. Duncan Geere: Video: CubeStormer II robot beats Rubik’s Cube speed record. In: wired.co.uk. 11. November 2011, abgerufen am 20. Mai 2014 (englisch).
  16. The CubeStormer 2 - World Record Rubik’s Cube Solver made from LEGO NXT Mindstorms. In: YouTube. legobuildingblocks, 12. November 2012, abgerufen am 17. März 2014.
  17. Ingo Pakalski: Roboter löst Zauberwürfel schneller als Mensch. Golem.de, 16. März 2014, abgerufen am 17. März 2014.
  18. Henning van Lil: Rekordverdächtiges Drehen am Rubiks Cube: 1,04 Sekunden – der entzauberte Würfel. In: tagesschau.de. Norddeutscher Rundfunk, 28. Januar 2016, abgerufen am 28. Januar 2016.
  19. Jay Flatland, Paul Rose: World’s Fastest Rubik’s Cube Solving Robot. In: youtube.com. 11. Januar 2016, abgerufen am 29. Januar 2016 (englisch).
  20. lichtsuchender.wordpress.com
  21. Historie der 6×6×6-Zauberwürfel-Rekorde auf der offiziellen World Cube Association Website
  22. Historie der 7×7×7-Zauberwürfel-Rekorde auf der offiziellen World Cube Association Website
  23. Das Google Doodle zum 40. Geburtstag
  24. Der Zauberwürfel bei den Simpsons
  25. mka/dpa: „Wer wird Millionär?“: Student gewinnt die Million – nach 20 Minuten Grübeln. In: spiegel.de. Spiegel Online GmbH, 7. Dezember 2015, abgerufen am 8. Dezember 2015.
  26. Screenshot aus The Big Bang Theory