Dodekaeder

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Regelmäßiges Pentagondodekaeder
Regelmäßiges Pentagondodekaeder (Animation)
Art der Seitenflächen regelmäßige Fünfecke
Anzahl der Flächen 12
Anzahl der Ecken 20
Anzahl der Kanten 30
Schläfli-Symbol {5,3}
dual zu Ikosaeder
Körpernetz Netz
Anzahl verschiedener Netze 43380
Anzahl Kanten in einer Ecke 3
Anzahl Ecken einer Fläche 5

Das Dodekaeder [ˌdodekaˈʔeːdɐ] (von griech. Zwölfflächner; dt. auch (das) Zwölfflach) ist ein Körper mit zwölf Flächen. In der Regel ist damit ein platonischer Körper gemeint, nämlich das regelmäßige Pentagondodekaeder, ein Körper mit

  • 12 kongruenten regelmäßigen Fünfecken
  • 30 gleich langen Kanten, von denen jede die Seite von zwei Fünfecken ist
  • 20 Ecken, in denen jeweils drei dieser Fünfecke zusammentreffen

Es gibt aber auch andere Dodekaeder von hoher Symmetrie.

Das regelmäßige Pentagondodekaeder[Bearbeiten | Quelltext bearbeiten]

Dodekaeder mit Beispielen der Drehachsen und einer Symmetrieebene (blau)

Wegen seiner hohen Symmetrie – alle Ecken, Kanten und Flächen sind untereinander gleichartig – ist das Dodekaeder ein reguläres Polyeder. Es hat:

  • 6 fünfzählige Drehachsen (durch die Mittelpunkte zweier gegenüberliegender Flächen)
  • 10 dreizählige Drehachsen (durch gegenüberliegende Ecken)
  • 15 zweizählige Drehachsen (durch die Mittelpunkte gegenüberliegender Kanten)
  • 15 Symmetrieebenen (durch einander gegenüberliegende und parallele Kanten)

und ist

Insgesamt hat die Symmetriegruppe des Dodekaeders – die Dodekaedergruppe oder Ikosaedergruppe – 120 Elemente. Die 60 orientierungserhaltenden Symmetrien entsprechen der alternierenden Gruppe . Manchmal wird auch diese Untergruppe Ikosaedergruppe genannt. Die volle Symmetriegruppe ist isomorph zu dem direkten Produkt . Dass das Produkt direkt ist, sieht man daran, dass die Punktspiegelung am Mittelpunkt mit den Drehungen kommutiert.

Die Symmetrie des Dodekaeders ist durch die hier auftretenden fünfzähligen Symmetrieachsen mit einer periodischen Raumstruktur nicht verträglich (siehe Parkettierung). Es kann daher kein Kristallgitter mit Ikosaedersymmetrie geben (siehe Quasikristalle).

Struktur[Bearbeiten | Quelltext bearbeiten]

Dodekaeder (blau) mit dualem Ikosaeder (grün).Die Mittelpunkte (rot) der regelmäßigen Fünfecke sind die Ecken des Ikosaeders.

Das Ikosaeder ist das zum Dodekaeder duale Polyeder und umgekehrt.

Mit Hilfe von Dodekaeder und Ikosaeder können zahlreiche Körper konstruiert werden, die ebenfalls die Dodekaedergruppe als Symmetriegruppe haben. So erhält man zum Beispiel

Aus den Kanten des Dodekaeders kann man 3 Paare gegenüberliegender Kanten so auswählen, dass diese Paare 3 kongruente, zueinander paarweise orthogonale Rechtecke aufspannen. Die restlichen 8 Ecken bilden dann die Ecken eines dem Dodekaeder einbeschriebenen Würfels. Insgesamt gibt es fünf derartige Positionen, wobei jede Kante des Dodekaeders zu genau einer solchen Position gehört und jede Ecke Eckpunkt von zwei einbeschriebenen Würfeln ist. Die Symmetriegruppe des Dodekaeders bewirkt alle 5! = 120 Permutationen dieser fünf Positionen bzw. Würfel.

Da die Kanten des einbeschriebenen Würfels Diagonalen der Fünfecke sind, entspricht das Verhältnis der Längen der Kanten des Dodekaeders und jener eines eingeschriebenen Würfels dem Goldenen Schnitt.

Formeln[Bearbeiten | Quelltext bearbeiten]

Die folgende Tabelle ist eine Zusammenstellung von metrischen Eigenschaften eines regulären Dodekaeders, die im nächsten Abschnitt hergeleitet werden.

Größen eines Dodekaeders mit Kantenlänge a
Volumen

01 Dodekaeder-Größen.png

ohne Raumwinkel in den Ecken
Oberflächeninhalt
Umkugelradius
Kantenkugelradius
Inkugelradius
Verhältnis von Volumen
 zu Umkugelvolumen
Innenwinkel des
regelmäßigen Fünfecks
Winkel zwischen
benachbarten Flächen
Winkel zwischen
Kante und Fläche
Raumwinkel in den Ecken
Sphärizität

Winkel, Punkte, Flächen, Radien, Koordinaten[Bearbeiten | Quelltext bearbeiten]

Dodekaeder mit einbeschriebenem Würfel

Einbeschriebener Würfel[Bearbeiten | Quelltext bearbeiten]

Viele metrische Eigenschaften eines Dodekaeders lassen sich aus der im Bild gezeigten Koordinatendarstellung berechnen/ablesen. In dem Bild wird der Dodekaeder mit der Kantenlänge aus dem Würfel mit der Kantenlänge , der Länge der Diagonale in einer Seitenfläche (5-Eck), aufgebaut. Die Würfelpunkte sind . Sie sind 8 der 20 Dodekaeder Punkte. ist solch ein Punkt. Beim Rechnen ist immer wieder die Gleichung nützlich (siehe Goldener Schnitt).

ist ein Dodekaederpunkt in der y-z-Ebene.

Um dies einzusehen, muss gezeigt werden, dass der

  • Abstand einer nicht in einer Würfelebene liegenden Kante von der Würfelebene gleich ist.

Hierzu wird der Tangens des Winkels (siehe Bild Berechnung v. Winkel) auf zwei Arten ausgedrückt:

Winkel[Bearbeiten | Quelltext bearbeiten]

Zur Berechnung von Winkel, … eines Dodekaeders

Damit ist (siehe nebenstehendes Bild) der

  • Winkel zwischen Seitenflächen
  • Winkel zwischen einer Kante und einer Seitenfläche

Punkte des Dodekaeders[Bearbeiten | Quelltext bearbeiten]

Startet man mit den oben beschriebenen – auch im Bild erkennbaren – Punkten (8 Würfelpunkte, 12 Andere) und will nachweisen, dass sie die Ecken eines regulären Dodekaeders sind, zeigt man, dass

  1. alle Punkte auf einer Kugel liegen (Ihr Abstand zum Nullpunkt ist gleich)
  2. die Punkte jedes Fünfecks in einer Ebene liegen
  3. benachbarte Punkte den Abstand haben.

Denn dann liegen die Punkte eines jeden Fünfecks auf einem ebenen Schnitt mit der Kugel, also auf einem Kreis, und benachbarte Punkte haben den gleichen Abstand, d. h., das Fünfeck ist regulär.

Um/In/Kanten-Kugelradien[Bearbeiten | Quelltext bearbeiten]

Aus der Zeichnung erkennt man ferner den

  • Kantenkugelradius
  • Umkugelradius

Der Inkugelradius ist (siehe Bild Berechnung v. Winkel) der Abstand der Gerade in der y-z-Ebene durch den Punkt mit der Steigung . Diese Gerade hat die Gleichung

.

Bestimmt man den Abstand dieser Gerade vom Nullpunkt mit Hilfe der Hesseschen Normalform, so ergibt sich der Inkugelradius . Es ist

Damit ist der

  • Inkugelradius.

Oberfläche, Volumen[Bearbeiten | Quelltext bearbeiten]

Bild 1: Zur Volumenberechnung
Bild 2: Volumen des Dodekaeders entspricht Volumen von 12 Pyramiden

Die Oberfläche des Dodekaeders ist die Summe der 12 der 5-Eckflächen. Die Fläche eines regelmäßigen 5-Ecks ist . Damit ist die

  • Oberfläche des Dodekaeders: .

Das Volumen des Dodekaeders (Bild 1) ist die Summe des Würfelvolumens und den 6 über jeder Würfelseite liegendem Dach ähnlichen Teil. Das Volumen eines solchen Dachteiles setzt sich aus dem Volumen einer Pyramide mit Grundfläche und Höhe (siehe Bild) und dem dreieckigen Prisma mit Grundfläche und Länge zusammen. Also ist

und es ist das

  • Volumen des Dodekaeders:

Eine weitere Möglichkeit der Volumenberechnung (Bild 2) ergibt sich, wenn man das Dodekaeder, als einen Zusammenbau von 12 gleich großen Pyramiden mit fünfeckiger Grundfläche ansieht. Das Volumen des Dodekaeders entspricht dann dem Volumen von 12 Pyramiden.

Für das Volumen der Pyramide gilt allgemein . Nimmt man für die fünfeckige Grundfläche , für die Höhe der Pyramide gleich dem Inkugelradius des Dodekaeders und setzt abschließend den Faktor 12, ergibt sich

daraus folgt ebenfalls

  • Volumen des Dodekaeders:

Raumwinkel in den Ecken[Bearbeiten | Quelltext bearbeiten]

Raumwinkel mit Einheitskugel
Raumwinkel

Der Raumwinkel in einer Dodekaederecke ist der Flächeninhalt des in dem Bild durch rote Punkte markierten sphärischen Dreiecks, das die Kanten einer Ecke auf der Einheitskugel an dieser Ecke ausstechen. Die Winkel dieses sphärischen Dreiecks sind alle gleich dem Winkel (siehe oben) zwischen zwei Dreiecksebenen. Der Flächeninhalt des sphärischen Dreiecks ist der Raumwinkel

Dieser Raumwinkel entspricht der Fläche eines Kugelsegments auf der Einheitskugel mit einem halben Öffnungswinkel

Anwendungen[Bearbeiten | Quelltext bearbeiten]

Das kubische Pentagondodekaeder[Bearbeiten | Quelltext bearbeiten]

Das kubische Pentagondodekaeder hat ebenfalls 12 Flächen, 20 Ecken und 30 Kanten. Die Flächen sind aber nicht regelmäßig. Jede der 12 Flächen ist ein Fünfeck mit vier kürzeren und eine längeren Kante. Insgesamt besitzt das Polyeder 24 kürzere und 6 längere Kanten.[3] Die 8 gelben Ecken in der Abbildung bilden einen Würfel. In der Natur kommt Pyrit (FeS2) manchmal in dieser Gestalt vor. Deshalb wird das kubische Pentagondodekaeder auch Pyrit-Dodekaeder oder Pyritoeder genannt. Bei Kristallen sind fünfzählige Achsen unmöglich, wie das reguläre Pentagondodekaeder sie besitzt, weil es keine lückenlose periodische Flächenfüllung mit fünfzähliger Symmetrie gibt. Nur bei nicht streng periodischen „Kristallen“, also Quasikristallen, ist ein reguläres Pentagondodekaeder denkbar.

Kubisches Pentagondodekaeder

Netze des Dodekaeders[Bearbeiten | Quelltext bearbeiten]

Das Dodekaeder hat 43380 Netze.[4] Das heißt, es gibt 43380 Möglichkeiten, ein hohles Dodekaeder durch Aufschneiden von 19 Kanten aufzuklappen und in der Ebene auszubreiten. Die anderen 11 Kanten verbinden jeweils die 12 regelmäßigen Fünfecke des Netzes. Um ein Dodekaeder so zu färben, dass keine benachbarten Flächen dieselbe Farbe haben, braucht man mindestens 4 Farben.

Animation eines Dodekaedernetzes

Graphen, duale Graphen, Zyklen, Färbungen[Bearbeiten | Quelltext bearbeiten]

Färbungen veranschaulicht
Dodekaeder einbeschrieben vom dualen Ikosaeder

Das Dodekaeder hat einen ihm zugeordneten ungerichteten planaren Graphen mit 20 Knoten, 30 Kanten und 12 Gebieten, der 3-regulär ist, d. h. von jedem Knoten gehen 3 Kanten aus, sodass der Grad für alle Knoten gleich 3 ist. Bei planaren Graphen ist die genaue geometrische Anordnung der Knoten unwesentlich. Wichtig ist allerdings, dass sich die Kanten nicht schneiden müssen. Die Knoten dieses Dodekaedergraphen entsprechen den Ecken des Dodekaeders.

Die Knoten des Dodekaedergraphen können mit 3 Farben so gefärbt werden, dass benachbarte Knoten immer unterschiedlich gefärbt sind. Dies bedeutet, dass die chromatische Zahl dieses Graphen gleich 3 ist (siehe Knotenfärbung). Außerdem können die Kanten mit 3 Farben so gefärbt werden, dass benachbarte Kanten immer unterschiedlich gefärbt sind. Mit 2 Farben ist das nicht möglich, sodass der chromatische Index für die Kantenfärbung gleich 3 ist (das nebenstehende Bild veranschaulicht diese Färbungen).

Knotenfärbung des Dodekaedergraphen
Kantenfärbung des Dodekaedergraphen
Flächenfärbung des Dodekaedergraphen mit dualer Knotenfärbung des Ikosaedergraphen

Um die entsprechende nötige Anzahl der Farben für die Flächen oder Gebiete zu bestimmen, ist der duale Graph (Ikosaedergraph) mit 12 Knoten, 30 Kanten und 20 Gebieten hilfreich. Die Knoten dieses Graphen werden dabei den Gebieten des Dodekaedergraphen eineindeutig (bijektiv) zugeordnet und umgekehrt (siehe bijektive Funktion und Abbildung). Die Knoten des Ikosaedergraphen können mit 4 Farben so gefärbt werden, dass benachbarte Knoten immer unterschiedlich gefärbt sind, aber nicht mit 3 Farben, sodass die chromatische Zahl des Ikosaedergraphen gleich 4 ist. Daraus lässt sich indirekt schließen: Weil die chromatische Zahl gleich 4 ist, sind 4 Farben für eine solche Flächenfärbung des Dodekaeders oder eine Färbung der Gebiete des Dodekaedergraphen nötig.[5]

Die 19 aufgeschnittenen Kanten jedes Netzes (siehe oben) bilden zusammen mit den Ecken (Knoten) einen Spannbaum des Dodekaedergraphen. Jedes Netz entspricht genau einem Spannbaum und umgekehrt, sodass hier eine eineindeutige (bijektive) Zuordnung zwischen Netzen und Spannbäumen besteht. Wenn man ein Dodekaedernetz ohne das äußere Gebiet als Graphen betrachtet, erhält man als dualen Graphen jeweils einem Baum mit 12 Knoten und 11 Kanten und dem maximalen Knotengrad 3. Jede Fläche des Dodekaeders wird dabei einem Knoten des Baums zugeordnet. Dabei kommt nicht jede graphentheoretische Konstellation (siehe Isomorphie von Graphen) solcher Bäume vor, aber einige mehrfach.

Der Dodekaedergraph besitzt 60 Hamiltonkreise, aber keine Eulerkreise.[6]

Dodekaedergraph mit einem der 60 Hamiltonkreise

Andere Dodekaeder[Bearbeiten | Quelltext bearbeiten]

Andere Dodekaeder sind zum Beispiel:

Einige dieser Polyeder haben mehr als 12 Flächen, sind also keine echten Dodekaeder.

Weblinks[Bearbeiten | Quelltext bearbeiten]

Commons: Dodekaeder – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Dodekaeder – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. waldorfschule-muenster.de (Memento vom 11. Juni 2015 im Internet Archive)
  2. siehe z. B. Georg Unger: Das offenbare Geheimnis des Raumes. Meditationen am Pentagondodekaeder nach Carl Kemper. Verlag Freies Geistesleben, Stuttgart 1963.
  3. Dodekaeder / Pentagondodekaeder / Pentagonal dodecahedron. Mineralienatlas, abgerufen am 25. Dezember 2020.
  4. Eric Weisstein: Dodecahedron. Netze. In: MathWorld Wolfram. A Wolfram Web Resource, abgerufen am 1. Juli 2020.
  5. Mike Zabrocki: HOMEWORK #3 SOLUTIONS - MATH 3260. (PDF) York University, Mathematics and Statistics, Toronto, 2003, S. 4, abgerufen am 31. Mai 2020.
  6. Eric Weisstein: Dodecahedral Graph. Graphen. In: MathWorld Wolfram. A Wolfram Web Resource, abgerufen am 1. Juli 2020.