Enceladus (Mond)

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Saturn II (Enceladus)
Enceladusstripes cassini.jpg
Mosaik des Enceladus in Falschfarben aus Bildern der Raumsonde Cassini
Zentralkörper Saturn
Eigenschaften des Orbits
Große Halbachse 237.948 km
Periapsis 236.830 km
Apoapsis 239.066 km
Exzentrizität 0,0047
Bahnneigung 0,019°
Umlaufzeit 1,370217824 Tage
Mittlere Orbitalgeschwindigkeit 12,6353 km/s
Physikalische Eigenschaften
Albedo 0,99
Scheinbare Helligkeit 11,8 mag
Mittlerer Durchmesser 504,2 ± 0,4
(513,2 × 502,8 × 496,6) km
Masse 1,08022 ± 0,00101 × 1020 kg
Oberfläche 798.648 km²
Mittlere Dichte 1,608 ± 0,003 g/cm³
Siderische Rotation 1,370217824 Tage
Achsneigung
Fallbeschleunigung an der Oberfläche 0,114 m/s²
Fluchtgeschwindigkeit 239 m/s
Oberflächentemperatur (−240,3 bis −198 bis −128 °C)
32,9 bis 75 bis 145 K
Entdeckung
Entdecker

Wilhelm Herschel

Datum der Entdeckung 28. August 1789
Anmerkungen Enceladus hat eine Atmosphäre mit
< 10−6 Pa
Saturn's Rings PIA03550.jpg
Die Positionen der inneren Saturnmonde in Saturns Ringsystem, von innen nach außen: Pan, Atlas, Prometheus, Pandora, Janus und Epimetheus, Mimas, Enceladus, Tethys, Dione sowie Rhea

Enceladus (auch Saturn II) ist der vierzehnte und sechstgrößte der 62 bekannten Monde des Planeten Saturn. Er ist ein Eismond und zeigt kryovulkanische Aktivitäten, deren sehr hohe Fontänen aus Wassereispartikeln auf der südlichen Hemisphäre eine dünne Atmosphäre erzeugen. Diese Fontänen speisen wahrscheinlich den E-Ring des Saturns. Im Bereich der vulkanischen Aktivität wurden auch Hinweise auf flüssiges Wasser gefunden, sodass Enceladus als einer der möglichen Orte im Sonnensystem mit günstigen Bedingungen für die Entstehung von Leben gilt.

Entdeckung und Benennung[Bearbeiten]

Enceladus wurde am 28. August 1789 von dem britischen Astronomen Wilhelm Herschel entdeckt.[1]

Enceladus ist der 6. entdeckte Saturnmond und der 12. entdeckte Mond im gesamten Sonnensystem. Durch seine damals am zweitnächsten zu Saturn liegende Umlaufbahn wurde er als zweitinnerster der sieben bis dahin bekannten großen Saturnmonde von der Internationalen Astronomischen Union (IAU) mit der römischen Nummerierung II bezeichnet.

Benannt wurde der Mond nach dem Giganten Enkelados (lateinische Form: Enceladus) aus der griechischen Mythologie.

Der Name „Enceladus“ sowie Namen für sieben weitere Saturnmonde wurde von Wilhelm Herschels Sohn, dem Astronomen John Herschel, in einer 1847 erschienenen Veröffentlichung (Results of Astronomical Observations made at the Cape of Good Hope) vorgeschlagen. Sie sollten nach Geschwistern des Titanen Kronos benannt werden, der dem römischen Saturn entspricht.

Bahneigenschaften[Bearbeiten]

Umlaufbahn[Bearbeiten]

Enceladus umkreist Saturn auf einer prograden, fast perfekt kreisförmigen Umlaufbahn in einem mittleren Abstand von 237.948 km (ca. 3,948 Saturnradien) von dessen Zentrum (bzw. dem Schwerezentrum), also etwa 177.680 km über dessen Wolkenobergrenze. Die Bahnexzentrizität beträgt 0,0047, die Bahn ist 0,019° gegenüber dem Äquator von Saturn geneigt, liegt also fast in der Äquatorebene des Planeten. Durch die niedrige Exzentrizität variiert die Bahn in der Entfernung zu Saturn um etwa 2.236 km.

Die Umlaufbahnen des nächstinneren Mondes Pallene ist im Mittel etwa 25.668 km vom Orbit von Enceladus entfernt, die Entfernungen der Bahnen der nächstäußeren Monde Tethys sowie deren Trojaner-Monde Telesto und Calypso betragen im Mittel etwa 56.671 km.

Enceladus umläuft Saturn in 1 Tag, 8 Stunden, 53 Minuten und 6,82 Sekunden. Dies ist etwa 1 Stunde und 2,3 Minuten weniger als die Umlaufzeit des Uranusmondes Miranda. Enceladus benötigt für einen Umlauf 5 Stunden und etwa 12,7 Minuten länger als der innere Nachbar Pallene.

Bahnresonanzen[Bearbeiten]

Enceladus steht in gravitativer Wechselwirkung mit seiner Nachbarschaft. Er befindet sich gegenwärtig in einer 2:1-Bahnresonanz mit Dione sowie nahe einer 3:2-Resonanz mit Mimas. Darüber hinaus läuft Enceladus fast in einer 4:3-Bahnresonanz mit dem nächstäußeren Mond Tethys. Außerdem stört er seinen unmittelbar inneren Nachbarn Pallene durch seine Gravitation und verursacht Abweichungen in deren Bahn in der Größenordnung von etwa 4 km.

E-Ring[Bearbeiten]

E-Ring mit Ausstoß von Enceladus

Der E-Ring, manchmal auch „Enceladus-Ring“ genannt, ist der äußerste der regulären Saturnringe. Er ist im Vergleich zu den anderen Ringen des Planeten extrem breit; es handelt sich um eine sehr diffuse Scheibe aus mikroskopisch kleinen Eis- oder Staubteilchen (mit Silikaten, Kohlendioxid und Ammoniak), die sich etwa vom Orbit von Mimas bis zur Bahn von Rhea hinzieht, obschon einige Beobachtungen darauf schließen lassen, dass sie sich sogar bis zur Titan-Bahn fortsetzt, was eine Breite zwischen 340.000 und 1.040.000 km bedeutet. Verschiedenen mathematischen Berechnungen zufolge ist ein solcher Ring instabil und besitzt eine Lebensspanne zwischen 10.000 und einer Million Jahren, daher muss er konstant mit neuem Material gespeist werden. Die Umlaufbahn von Enceladus befindet sich innerhalb des Rings, an seinem schmalsten, jedoch auch gegenwärtig dichtesten Ort. Aus diesem Grund geht man davon aus, dass Enceladus die Hauptquelle der Ringpartikel ist. Diese Theorie wurde durch die Vorbeiflüge von Cassini gestützt. Es gibt zwei verschiedene Mechanismen, die den Ring speisen können: Die erste und womöglich wichtigste Quelle sind die kryovulkanischen Regionen am Südpol, die Material ausstoßen, wobei der Großteil davon zwar wieder auf die Oberfläche zurückfällt, doch durch Enceladus’ niedrige Fluchtgeschwindigkeit von 866 km/h können Partikel entweichen und in einen Orbit um Saturn gelangen. Der zweite Mechanismus ist das Bombardement durch Mikrometeoriten, die auf der Oberfläche des Mondes einschlagen und Staubteilchen freisetzen. Letzterer Vorgang ist nicht einzigartig auf Enceladus, er betrifft alle Monde, die Saturn innerhalb des E-Rings umlaufen.

Rotation[Bearbeiten]

Die Rotationszeit ist gleich der Umlaufzeit und Enceladus weist damit, wie der Erdmond und alle großen Trabanten der Gasriesen, eine synchrone Rotation auf, die sich somit ebenfalls binnen 1 Tag, 8 Stunden, 53 Minuten und 6,82 Sekunden vollzieht, zeigt also immer mit derselben Hemisphäre zu Saturn. Die Rotationsachse ist nicht gegen die Umlaufbahn geneigt, steht also senkrecht auf der Umlaufebene.

Physikalische Eigenschaften[Bearbeiten]

Größe[Bearbeiten]

Größenvergleich: Enceladus und Großbritannien (Fotomontage)

Enceladus ist annähernd kugelförmig, mit einem mittleren Durchmesser von 504,2 km. Die genauen Abmessungen sind 513,2 × 502,8 × 496,6 km. Die Abweichung von etwa 3 % ist auf die Gezeitenkräfte von Saturn zurückzuführen, was dem Mond die Form eines Ellipsoids verleiht. Die Längsachse ist auf Saturn ausgerichtet, die mittlere Achse befindet sich zwischen führender und folgender Hemisphäre und die kürzeste Achse zwischen den Polen. Enceladus ist der sechstgrößte Saturnmond und rangiert im gesamten Sonnensystem auf dem 17. Platz bei allen Planetenmonden sowie dem 82. Platz aller bislang bekannten Körper überhaupt (Stand November 2011).

Von der Größe her ist Enceladus am ehesten mit dem zweitgrößten Hauptgürtel-Asteroiden Vesta oder dem fünftgrößten Uranusmond Miranda zu vergleichen.

Die Gesamtfläche von Enceladus beträgt etwa 798.650 km², dies entspricht in etwa der Fläche von Mosambik oder Pakistan. Die Fläche lässt sich auch mit der von Frankreich und Großbritannien zusammen (ohne Überseegebiete) vergleichen.

Innerer Aufbau[Bearbeiten]

Enceladus ist vermutlich überwiegend aus Wassereis zusammengesetzt. Mit 1,61 g/cm3 weist er die drittgrößte Dichte aller großen Saturnmonde auf (übertroffen nur von Phoebe und von Titan, dessen Dichte durch gravitative Kompression erhöht wird). In seinem Inneren müssen daher größere Anteile an dichtem Material vorhanden sein, etwa silikatisches Gestein; es handelt sich demnach um einen differenzierten Körper.

Oberfläche[Bearbeiten]

Nahaufnahmen von Cassini zeigen deutlich unterscheidbare Terrains.

Enceladus ist außergewöhnlich hell, da er großflächig mit reinem Wassereis bedeckt ist, das 99 % des eingestrahlten Sonnenlichts reflektiert. Dies ist die höchste Albedo eines Himmelskörpers im Sonnensystem; sie übertrifft sogar die Reflektivität von frisch gefallenem Schnee. Aufgrund der hohen Reflexion des Sonnenlichts herrschen auf Enceladus meist Temperaturen unter −200 °C bzw. unter 70 Kelvin.

Auf seiner Oberfläche konnten verschiedene Terrains ausgemacht werden. Neben Einschlagskratern sind flache Ebenen sowie ausgeprägte Brüche und Verwerfungen sichtbar. Ein Teil seiner Oberfläche scheint mit einem geschätzten Alter von 100 Millionen Jahren relativ jung zu sein. Dies deutet darauf hin, dass Enceladus geologisch aktiv ist. Ursache ist offensichtlich Kryovulkanismus (Kältevulkanismus), bei dem Wasser aus dem Innern des Mondes austritt und sich über die Oberfläche verteilt. Enceladus ist der kleinste bekannte Körper im Sonnensystem mit einer geologischen Aktivität dieser Art.

Erforschung durch die Sonde Cassini[Bearbeiten]

Die Raumsonde Cassini untersuchte den Mond bei mehreren nahen Vorbeiflügen ab März 2005. Dabei entdeckte sie ein Magnetfeld und eine dünne Wasserdampf-Atmosphäre. Da die Schwerkraft von Enceladus zu schwach ist, um die Gase längere Zeit zu halten, deutet dies auf eine dauerhafte Quelle auf dem Mond selbst hin. Die Gase stammen entweder von der Oberfläche oder aus dem Inneren des Mondes. Man vermutete, sie könnten durch Vulkane, Geysire oder andere Aktivitäten ausgestoßen werden. Enceladus ist damit, neben Titan, der zweite Mond des Saturn, der eine Atmosphäre besitzt. Die Enceladusatmosphäre scheint jedoch auf die geologisch aktive Südpolarregion beschränkt zu sein, wie weitere Daten der Cassini-Mission ergaben.

Vulkanische Aktivität in der Südpolarregion[Bearbeiten]

Modell eines „kalten Geysirs“ auf Enceladus
Kryovulkanische Aktivität auf Enceladus

Überraschenderweise befindet sich am Südpol dieses Mondes eine Zone lokaler Erwärmung, die die Oberfläche dort um etwa 20 bis 25 K stärker aufheizt, als es zu erwarten wäre. Die Energiequelle für die vulkanischen Vorgänge ist unbekannt. Es werden aber verschiedene Modelle diskutiert. Enceladus ist eigentlich viel zu klein, als dass radioaktiver Zerfall zu einer bedeutenden Erwärmung im Innern des Mondes führen würde. Er umkreist Saturn in einer 2:1-Resonanz mit dem Mond Dione (wie die Monde Io und Europa den Jupiter), wodurch Gezeitenkräfte wirksam werden, die Reibungen im Mondinnern und damit eine Erwärmung bewirken. Allerdings ist dieser Mechanismus nicht ausreichend, um genügend Wärme zur Verflüssigung von Wassereis zu erzeugen. Die gesamte Erhitzungsrate, die sich aus der Summe möglichen radioaktiven Zerfalls im Innern sowie der maximalen Gezeitenkräfte ergibt, beträgt lediglich etwa ein Zehntel der beobachteten Wärmeenergie. Im Innern von Enceladus könnten chemische Stoffe vorhanden sein, die den Schmelzpunkt des Eises herabsetzen. Diskutiert wird das Vorhandensein von Ammoniak, welches dies bewirken könnte. Waite u. a. veröffentlichten 2009 neue Messdaten von Cassini, bei denen erstmals Ammoniak detektiert werden konnte.[2]

Temperaturprofil an den sogenannten „Tigerstreifen“

In der geologisch aktiven Region ist die Oberfläche von parallelen, Hunderte Kilometer langen Streifen durchzogen, die aus bis zu 300 Meter tiefen Spalten bestehen, in denen kristallines Eis bis zur Oberfläche vordringt. Die Umgebung erinnert in ihrem Aussehen an eine vorübergehend erstarrte zähflüssige Masse. Eventuell bewegt sich unter der Oberfläche das Eis in Konvektionsströmen und löst eine kryovulkanische Spaltenaktivität aus. Der Vorgang erinnert in seinen Effekten an die Plattentektonik der Erde oder an vergleichbare Aktivitäten auf dem Jupitermond Europa. Das Ausstoßvolumen der Tigerstreifen schwankt zyklisch. Am schwächsten erscheinen die Geysire, wenn sich Enceladus am saturnnächsten Punkt seiner Umlaufbahn befindet, um dann kontinuierlich in ihrer Aktivität zuzunehmen, je weiter sich der Mond von seinem Planeten entfernt. Die Ausstoßrate ist am saturnfernsten Punkt schließlich drei bis vier Mal so hoch wie am saturnnächsten. Ein Erklärungsmodell ist, dass bei größerer Nähe zum Saturn und der daraus resultierenden stärkeren gravitativen Belastung die Tigerstreifen regelrecht zusammendrückt werden, wodurch sich die Ausstoßöffnungen verkleinern und weniger Material entweichen lassen.[3]

Diese Region scheint offenkundig die Quelle des sehr feinen E-Rings des Saturns und auch der dünnen Atmosphäre um Enceladus zu sein. Da sich das Ringmaterial nicht länger als einige tausend Jahre auf seiner Bahn halten kann, sorgt die geologische Aktivität des Mondes für ständigen Nachschub.

Am 14. Juli 2005 wurden von der Raumsonde Cassini, die den Mond in nur 175 km Abstand überflog, unzählige Eisbrocken in der Größe eines Einfamilienhauses beobachtet, deren Herkunft nicht ganz klar ist. Da sich diese Brocken im Bereich der bereits erwähnten Streifenmuster befinden, besteht mit großer Wahrscheinlichkeit ein Zusammenhang zur kryovulkanischen Aktivität in der Südpolregion.[4]

Möglichkeiten für Leben auf Enceladus[Bearbeiten]

Am 9. März 2006 teilte die NASA mit, dass Aufnahmen von Cassini flüssiges Wasser in der Südpolregion von Enceladus vermuten lassen. Es könnte sich in Kammern befinden, die möglicherweise nur einige Meter unter der Oberfläche liegen, und bräche dann ähnlich einem Geysir an die Oberfläche aus. Die geysirartigen Fontänen in der Südpolarregion waren bis in eine Höhe von 500 Kilometern zu beobachten.[5] Ein Teil der Eispartikel fällt auf die Oberfläche zurück und bewirkt das besonders große Rückstrahlungsvermögen von Enceladus. Von dem Großteil der in den Weltraum entwichenen Partikel gelangt ein Teil auf die Oberfläche von anderen Saturnmonden, daher sind auch Mimas, Tethys, Dione und Rhea – die Satelliten im Bereich des E-Rings – im Vergleich zu anderen Monden ungewöhnlich hell.[6]

Daten des Ion and Neutral Mass Spectrometer vom 12. März 2008

Am 12. März 2008 hat Cassini Enceladus in einer Distanz von nur 23 Kilometern passiert. Dies war der geringste Abstand beim Vorbeiflug einer Raumsonde in der Geschichte der Raumfahrt. Dabei flog Cassini durch frisch ausgestoßene Partikel. Zwei Instrumente waren zu diesem Zeitpunkt in Betrieb: Der Cosmic Dust Analyzer und das Ion and Neutral Mass Spectrometer. Die Messergebnisse zeigten eine viel höhere Dichte von flüchtigen Gasen wie Wasserdampf, Kohlendioxid und Kohlenmonoxid als angenommen. Aber auch organische Materialien, die bereits durch eine spektroskopische Analyse einer Sternbedeckung nachgewiesen wurden, waren etwa 20-mal häufiger als erwartet. Die Partikeldichte war derart hoch, dass durch sie ein messbares Drehmoment auf die Sonde wirkte. Eine unerwartete Überraschung war die chemische Zusammensetzung der ausgestoßenen Partikel, welche der eines Kometen ähnelt. Im Gegensatz zu den Kometen wird Enceladus aber von innen erwärmt.

Enceladus besitzt somit Wärme, Wasser und organische Chemikalien, einige der wesentlichen Bausteine für die Entwicklung von Leben.[7]

Wasserozean[Bearbeiten]

Hauptartikel: Extraterrestrischer Ozean

Gravimetrische Messungen deuten darauf hin, dass sich unter dem Eis der Südpolregion ein Ozean aus Wasser befindet. Dabei wurden Vorbeiflüge von Cassini genutzt: Die Massenverteilung im Inneren des Mondes beeinflusst die Flugbahn der Sonde, was über die Dopplerverschiebung der Funksignale vermessen werden kann. Damit wurde eine Region höherer Dichte entdeckt, die als Wasserozean mit einer Tiefe von 10 km unter 30 bis 40 km Eis interpretiert wird.[8][9][10]

Elektrische Verbindung mit Saturn[Bearbeiten]

Enceladus ist entlang von Saturns Magnetfeldlinien durch einen elektrischen Strom mit Saturn verbunden. Dort wo die Elektronen die Saturnatmosphäre treffen, entstehen in den Polarregionen im UV-Licht leuchtende Flecke.[11]

Literatur[Bearbeiten]

  • C. C. Porco, P. Helfenstein, P. C. Thomas, A. P. Ingersoll, J. Wisdom, R. West, G. Neukum, T. Denk, R. Wagner, T. Roatsch, S. Kieffer, E. Turtle, A. McEwen, T. V. Johnson, J. Rathbun, J. Veverka, D. Wilson, J. Perry, J. Spitale, A. Brahic, J. A. Burns, A. D. DelGenio, L. Dones, C. D. Murray, S. Squyres: Cassini Observes the Active South Pole of Enceladus, Science (2006) 311, S. 1393–1401; doi:10.1126/science.1123013.
  • Thorsten Dambeck: Eismond als Staubquelle. Bild der Wissenschaft, März 2006, S. 46–47.
  • F. Postberg, S. Kempf, J. Schmidt, N. Brilliantov, A. Beinsen, B. Abel, U. Buck & R. Srama: Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus, Nature 459, S. 1098–1101 (25. Juni 2009); doi:10.1038/nature08046.

Weblinks[Bearbeiten]

 Commons: Enceladus (Mond) – Album mit Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten]

  1. William Herschel: Account of the Discovery of a Sixth and Seventh Satellite of the Planet Saturn; With Remarks on the Construction of Its Ring, Its Atmosphere, Its Rotation on an Axis, and Its Spheroidical Figure. By William Herschel, LL.D. F. R. S. Phil. Trans. R. Soc. Lond. January 1, 1790 80:1-20; doi:10.1098/rstl.1790.0001 (Volltext)
  2. Waite et al. (2009): [1] – 23. Juli 2009.
  3. Astronews.com: Was die Fontänen von Enceladus regelt – 1. August 2013.
  4. wissenschaft.de: Enceladus on the rocks – 21. Juli 2005.
  5. NASA's Cassini Discovers Potential Liquid Water on Enceladus – Presseerklärung, 9. März 2006.
  6. wissenschaft.de: Wie Enceladus seine Nachbarn zum Leuchten bringt – 9. Februar 2007.
  7. nasa: Cassini Tastes Organic Material at Saturn's Geyser Moon, Presseerklärung, 26. März 2008.
  8. Jonathan Amos: Saturn's Enceladus moon hides 'great lake' of water. In: BBC News, 3. April 2014. Abgerufen am 7. April 2014. 
  9. Jane Platt, Brian Bell: NASA Space Assets Detect Ocean inside Saturn Moon. In: NASA. 3. April 2014. Abgerufen am 3. April 2014.
  10. L. Iess, D.J. Stevenson, M. Parisi, D. Hemingway, R.A. Jacobson, J.I. Lunine, F. Nimmo, J.w. ArmstrongThe Gravity Field and Interior Structure of Enceladus. In: Science. 344, 4. April 2014, S. 78-80. doi:10.1126/science.1250551. Abgerufen am 3. April 2014.
  11. Cassini Sees Saturn Electric Link With Enceladus, Datum: 20. April 2011, Abgerufen: 26. April 2011 (englisch)