Chang’e-4

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Chang’e-4

NSSDC ID 2018-103A
Missions­ziel Erdmond
Auftrag­geber CNSA
Träger­rakete Changzheng 3B/E
Aufbau
Startmasse Lander: 1.200 kg
Rover: 140 kg
Verlauf der Mission
Startdatum 7. Dezember 2018
Startrampe Kosmodrom Xichang
 
20. Mai 2018 Start von Queqiao
 
7. Dez. 2018 Start von Chang’e-4
 
12. Dez. 2018 Erreichen der Mondumlaufbahn
 
3. Jan 2019 Landung auf dem Mond, Von Kármán/Südpol-Aitken-Becken
 
? Missionsende

Chang’e-4 (chinesisch 嫦娥四號 / 嫦娥四号, Pinyin Cháng'é Sìhào) ist eine Raumsonde der China National Space Administration (CNSA), die am 7. Dezember 2018 gestartet wurde und aus einem Lander mit einem Rover besteht. Chang’e-4 ist Chinas zweiter Mondlander und Rover. Nach der erfolgreichen Landung von Chang’e-3 wurde Chang’e-4, ursprünglich eine baugleiche Reservesonde für die Vorgängermission, an neue wissenschaftliche Ziele angepasst.[1] Wie seine Vorgänger ist das Raumfahrzeug nach Chang’e, der chinesischen Mondgöttin, benannt.

Die Sonde landete am 3. Januar 2019 um 3:26 Uhr MEZ erfolgreich im Mondkrater Von Kármán im Südpol-Aitken-Becken auf der Mondrückseite.[2]

Übersicht[Bearbeiten | Quelltext bearbeiten]

Das chinesische Mondforschungsprogramm hat drei Phasen: Die erste Phase bestand im Erreichen des Mondorbits – vollbracht durch die Missionen von Chang’e-1 im Jahr 2007 und Chang’e-2 im Jahr 2010. Die zweite war das Landen und Aussetzen eines Rovers auf dem Mond, wie es durch Chang’e-3 im Jahr 2013 und nun von Chang’e-4 im Januar 2019 erfolgte. In der dritten Phase sollen Mondproben von der erdzugewandten Seite gesammelt werden und zur Erde geschickt werden – eine Aufgabe für die zukünftigen Missionen Chang’e-5 und Chang’e-6. Das Programm soll in den 2030er Jahren bemannte Mondlandungen ermöglichen, mit dem Ziel, einen Außenposten in der Nähe des Südpols zu errichten.[3][4][5]

Die Chang’e-4-Mission wurde am 30. November 2015 im Rahmen der zweiten Phase des chinesischen Mondforschungsprogramms gestartet. Xu Dazhe, Direktor der China National Space Administration, sagte in der Eröffnungsrede, dass die Chang’e-4 Mission eine Plattform für internationale Kooperationen und gemeinsame Neuentwicklungen auf vielen Ebenen sein sollte.[6]

Das chinesische Monderkundungsprogramm bewilligte für Chang’e-4 erstmals private Investitionen von Einzelpersonen und Unternehmen. Ziel sei es, Innovationen in der Luft- und Raumfahrt zu beschleunigen, Produktionskosten zu senken und militärisch-zivile Beziehungen zu fördern.[7] Um die Nutzlasten von ausländischen Partnern zu integrieren, mussten die Ziele der Mission angepasst werden. Dies trug dazu bei, dass die Mission komplizierter wurde und sich verzögerte. Das Ziel der Mission ist die Erforschung von Alter und Zusammensetzung des Gesteins in einer unerforschten Mondregion. Ein weiteres Ziel ist die Entwicklung und Erprobung der erforderlichen Technologien für die folgenden Phasen des Programms. Nach Chang’e-4 soll eine Reihe weiterer roboterbasierter Mondmissionen folgen. Diese sollen, unter anderem mit der Erprobung von Techniken zur Errichtung von Gebäuden, eine bemannte Mondlandung vorbereiten.[8]

Ziele[Bearbeiten | Quelltext bearbeiten]

Zu den wissenschaftlichen Zielen gehören:[9]

  • Messung der Mondoberflächentemperatur über die Dauer der Mission
  • Messung der chemischen Zusammensetzung von Mondgesteinen und -böden
  • niederfrequente radioastronomische Beobachtungen und Untersuchungen
  • Studium der kosmischen Strahlung
  • Beobachtung der Sonnenkorona, Untersuchung ihrer Strahlungseigenschaften und -mechanismen und Untersuchen der Entwicklung und des Transports koronaler Massenauswürfe (CME) zwischen Sonne und Erde

Komponenten[Bearbeiten | Quelltext bearbeiten]

Relais-Satellit Queqiao[Bearbeiten | Quelltext bearbeiten]

Kommunikation mit Chang’e-4

Da eine direkte Funkverbindung mit der Mondrückseite nicht möglich ist, wurde am 21. Mai 2018 um 05:28 Ortszeit der Relais-Satellit Elsternbrücke (Queqiao) vom Kosmodrom Xichang gestartet[10] und im Halo-Orbit um den Erde-Mond Lagrange-Punkt L2 hinter dem Mond stationiert.[11] Der Name des Satelliten leitet sich aus der chinesischen Geschichte vom Kuhhirten und der Weberin ab. Queqiao kann Funksignale zwischen der Erde und Rückseite des Mondes weiterleiten und ermöglicht damit die Kommunikation und Kontrolle während der Mission.

Mikrosatelliten[Bearbeiten | Quelltext bearbeiten]

Im Rahmen der Mission Chang’e 4 wurden zusammen mit Queqiao zwei Mikrosatelliten (jeweils 45 kg) namens Longjiang-1 und Longjiang-2 (龙江 ‚Drachenfluss‘) gestartet. Longjiang-1 konnte jedoch nicht in den Mondorbit eintreten,[11] während Longjiang-2 erfolgreich war und 14 Monate lang im Mondorbit operierte, bis er am 31. Juli 2019 um 22:20 Peking-Zeit auf der Rückseite des Mondes kontrolliert zum Absturz gebracht wurde.[12] Diese Mikrosatelliten hatten die Aufgabe, den Himmel bei sehr niedrigen Frequenzen (1 MHz bis 30 MHz), entsprechend Wellenlängen von 300 m bis 10 m, zu beobachten, um energetische Phänomene kosmischen Ursprungs zu untersuchen.[13][14][15] Dies war ein langgehegtes Ziel der Wissenschaft, da aufgrund der Ionosphäre der Erde keine Beobachtungen in diesem Frequenzbereich im Erdorbit durchgeführt werden können. Geplant war ein Gruppenflug der zwei Sonden, um Interferometrie betreiben zu können.[13]

Bildmosaik der Mondrückseite, aufgenommen durch LRO. Links oben das Mare Moscoviense, links unten der dunkle Krater Tsiolkovskiy, im unteren Bilddrittel die fleckige große Beckenregion von Mare Ingenii, Leibnitz, Apollo und Poincaré.

Lander und Rover[Bearbeiten | Quelltext bearbeiten]

Der Lander und der Rover wurden sechs Monate nach dem Start des Relaissatelliten am 8. Dezember 2018 um 02:23 Ortszeit mit einer Changzheng-3B/E-Trägerrakete vom Kosmodrom Xichang ins All befördert.[16] Es war die erste Landung überhaupt auf der Rückseite des Mondes. Sie fand in einer unerforschten Region des Mondes statt, die als Südpol-Aitken-Becken bezeichnet wird.

Die Gesamtlandemasse der Einheit betrug 1340 kg, davon entfielen 1200 kg auf den Lander und 140 kg auf den Rover.[17] Nach der Landung fuhr der Lander eine Rampe aus, um den Rover Jadehase 2[18] auf die Mondoberfläche zu bringen. Der Rover misst 1,5 × 1,0 × 1,0 m und hat eine Masse von 140 kg.[19]

Wissenschaftliche Nutzlasten[Bearbeiten | Quelltext bearbeiten]

Sowohl Lander und Rover als auch Queqiao und die den Mond umkreisenden Mikrosatelliten tragen wissenschaftliche Nutzlasten. Der Relaissatellit stellt die Kommunikation sicher, während Lander und Rover die Geophysik der Landezone untersuchen sollen. Diese Nutzlasten werden zum Teil von internationalen Partnern in Schweden, Deutschland, den Niederlanden und Saudi-Arabien geliefert.

Lander[Bearbeiten | Quelltext bearbeiten]

Der Lander und der Rover transportieren wissenschaftliche Nutzlasten, um die Geophysik der Landezone mit einer sehr begrenzten chemischen Analysefähigkeit zu untersuchen.

Der Lander ist mit folgenden Instrumenten ausgestattet:

  • Landekamera (LCAM)[20][21]
  • Terrain-Kamera (TCAM)
  • Niederfrequenzspektrometer (VLFRS)[22] zur Erforschung von Sonnenbursts etc.[23]
  • Neutronen- und Strahlungsdosis-Detektor (Lunar Neutron and Radiation Dose Detector; LND), ein von Wissenschaftlern des Instituts für Experimentelle und Angewandte Physik der Universität Kiel unter der Leitung von Robert Wimmer-Schweingruber entwickeltes Neutronendosimeter, das neben der Messung der für Menschen besonders gefährlichen Neutronenstrahlung, für die es bislang nur stark differierende Modellrechnungen gibt, auch dazu dient, den Wassergehalt des Bodens zu ermitteln.[24] Dieses Gerät soll bis mindestens Ende 2019 Messungen vornehmen, die ersten Ergebnisse wurden Sönke Burmeister vom Institut jedoch bereits am 18. April 2019 bei einer feierlichen Zeremonie in Peking überreicht.[25][26][27]
  • Der Lander trägt auch einen 2,6 kg schweren Behälter mit Samen und Insekteneiern, um zu testen, ob Pflanzen und Insekten in Synergie schlüpfen und gemeinsam wachsen können. Das Experiment umfasste Samen von Kartoffeln, Raps, Baumwolle und Arabidopsis thaliana, dazu noch Hefe und Taufliegeneier.[28] Am 7. Januar 2019 spross als erstes die Baumwolle.[29][30] Wenn die Larven geschlüpft wären, hätten sie Kohlendioxid produziert, während die gekeimten Pflanzen durch Photosynthese Sauerstoff freisetzten. Die Wissenschaftler um Xie Gengxin und Liu Hanlong von der Chongqing-Universität hofften, dass die Pflanzen und Tiere zusammen eine einfache Synergie innerhalb des Behälters schaffen könnten. Eine Miniaturkamera machte jedes Wachstum sichtbar. Als jedoch am 13. Januar am Landeplatz von Chang’e-4 die Mondnacht einbrach, sank die Temperatur in dem Behälter auf −52 °C und die Lebewesen starben 212,75 Stunden nachdem sie kurz nach der Landung mittels Bewässerung aus der Hibernation geweckt wurden.[31][32] 1982 züchtete die Besatzung der sowjetischen Raumstation Saljut 7 einige Arabidopsis; es waren die ersten Pflanzen, die im Weltraum blühten und Samen produzierten. Sie hatten eine Lebensdauer von 40 Tagen.

Rover[Bearbeiten | Quelltext bearbeiten]

  • Panoramakamera (PCAM)[22]
  • Lunar Penetrating Radar (LPR) ist ein Bodenradar[22]
  • Visible und Near-Infrared Imaging Spectrometer (VNIS) für die Bildgebungsspektroskopie
  • Advanced Small Analyzer for Neutrals (ASAN) ist ein energetischer Analysator für neutrale Atome des schwedischen Instituts für Weltraumphysik (IRF). Es wird aufzeigen, wie Sonnenwind mit der Mondoberfläche interagiert und vielleicht sogar den Prozess der Entstehung von Mondwasser.[33]

Queqiao[Bearbeiten | Quelltext bearbeiten]

Landezone[Bearbeiten | Quelltext bearbeiten]

Landeplatz ist der Von-Kármán-Krater[37] (180 km Durchmesser) im Südpol-Aitken-Becken auf der erdabgewandten Seite des Mondes.[37] Der Von-Kármán-Krater ist von bis zu 10 km hohen Bergen umgeben, und der Landeplatz liegt auf einer „Meereshöhe“ von 5935 m.[38] Die Fläche, auf der eine Landung möglich war, betrug nur 1/8 der Zielfläche, die die Vorgängersonde Chang’e-3 im Dezember 2013 zur Verfügung hatte. Daher musste Chang’e-4 praktisch senkrecht landen, ein recht riskantes Manöver.[39] Wie bei der Vorgängersonde unterbrach Chang’e-4 eine Minute vor der Landung für etwa 13 Sekunden den Abstieg, um sich 99 m über dem Boden mit Hilfe eines vom Shanghaier Institut für technische Physik der Chinesischen Akademie der Wissenschaften (中国科学院上海技术物理研究所) entwickelten und gebauten Laser-Entfernungsmessers und eines dreidimensional abbildenden Laserscanners desselben Instituts selbstständig einen ebenen und von Felsbrocken freien Platz zu suchen,[40][41] auf den sie sich dann langsam absenkte.[42] Eines der Hauptprobleme hierbei war, dass der während der letzten Phase des Abstiegs der vom Triebwerk aufgewirbelte, elektrostatisch aufgeladene Mondstaub die Systeme der Sonde gefährden konnte.[43][44] Daher hatte die Gruppe Weltraummechanik (空间力学团队) des Instituts für Maschinenbau der Tianjin-Universität unter der Leitung von Cui Yuhong (崔玉红) und Wang Jianshan (王建山) in aufwendigen Computersimulationen und praktischen Experimenten einen möglichst sanften Landeablauf entwickelt.[45] Das Aufsetzen auf den Boden am 3. Januar 2019 um 02:26 UTC erfolgte dann auch ohne Probleme.[46]

Noch im Januar 2019 beantragte China bei der Internationalen Astronomischen Union, die Landestelle 天河基地 (Pinyin Tiānhé Jīdì), also „Basis Milchstraße“ zu nennen, ein Bezug zu der Sage vom Kuhhirten und der Weberin, wo die Milchstraße die beiden Liebenden trennt und nur einmal im Jahr von einem eine Brücke bildenden Schwarm Elstern (der heutige Relaissatellit Elsternbrücke) überbrückt wird. Am 4. Februar 2019 wurde dem Antrag von der IAU stattgegeben, der lateinische Name der Landestelle lautet „Statio Tianhe“.[47][48]

In den folgenden Monaten analysierten Forscher vom Labor für Mond- und Tiefraumerkundung der Nationalen Astronomischen Observatorien, der Fakultät für Astronomie und Weltraumwissenschaften an der Universität der Chinesischen Akademie der Wissenschaften sowie von der Chinesischen Akademie für Weltraumtechnologie, der Herstellerfirma der Sonde, die von der Landekamera und der Terrain-Kamera des Landers und der Panoramakamera des Rovers aufgenommenen Fotos und setzten sie in Bezug zu den von Chang’e-2 sowie dem Lunar Reconnaissance Orbiter der NASA erstellten Mondkarten. Nach photogrammetrischer Auswertung der Bilder konnte die Landestelle auf 177,5991 ° östlicher Länge und 45,4446 ° südlicher Breite bestimmt werden, was eine Abweichung von 348 m in der Länge und 226 m in der Breite, also insgesamt 415 m im Vergleich zu den LRO-Daten bedeutet. Zu erklären ist dies mit Messfehlern bei der Bestimmung des Orbits der NASA-Sonde, mit dem unregelmäßigen Gravitationsfeld des Mondes auf seiner Rückseite und in der Kamera begründeten Faktoren. Daher soll nun der Lander von Chang’e-4 als geodätischer Referenzpunkt für die Navigation von Jadehase 2 und für zukünftige Landungen auf der Mondrückseite verwendet werden.[49]

Ergebnisse[Bearbeiten | Quelltext bearbeiten]

Schematischer Aufbau des Mondes (links: erdzugewandte Vorderseite, rechts: Rückseite)

Schon bei der Chang'e-3-Mission hatte man mit Bedacht die Landestelle in der Nähe eines Kraters gewählt, und zwar so, dass der Lander noch auf ebenem Grund sicher landen konnte, während der Rover ohne weitere Bohrungen bereits Zugriff auf Auswurfmaterial aus 40–50 m Tiefe hatte, das durch den den Krater produzierenden Meteoriteneinschlag an die Oberfläche geschleudert worden war. Bei Chang'e-4 ging man nun einen Schritt weiter. Das Südpol-Aitken-Becken, mit 2500 km Durchmesser der größte Krater des Sonnensystems, entstand vor etwa 4 Milliarden Jahren, als ein sehr großer Einschlagkörper die Mondkruste (also die oberste Schicht des Mondes) weitgehend abtrug. Spätere Einschläge erzeugten dann den Von-Kármán-Krater und den nordöstlich davon gelegenen Finsen-Krater. Der Vorteil dieser Stelle lag für die Ingenieure darin, dass der ebene Boden des Von-Kármán-Kraters eine sichere Landung gewährleistete, während man hoffte, dass der den benachbarten Finsen-Krater produzierende Einschlag Material aus großer Tiefe nach oben geschleudert hatte.[50][51]

Diese Hoffnung wurde erfüllt. Als sich eine Gruppe von Wissenschaftlern der Nationalen Astronomischen Observatorien der Chinesischen Akademie der Wissenschaften sowie vom Shanghaier Institut für technische Physik der Chinesischen Akademie der Wissenschaften, dem Hersteller des auf den Rover Jadehase 2 montierten Infrarotspektrometers (Visible and Near-infrared Imaging Spectrometer bzw. VNIS),[52] die Daten ansahen, die dieser an zwei 30 m auseinanderliegenden Stellen ermittelt hatte, fiel ihnen als allererstes die außergewöhnliche Menge an kalziumarmen Orthopyroxenen (Pyroxene mit orthorhombischer Symmetrie) auf. Eine weitere Analyse ergab, dass die an jenen zwei Stellen am häufigsten im Regolith vorkommende Mineralgruppe Olivine waren, danach die kalziumarmen Pyroxene, und nur sehr wenig kalziumreiche Pyroxene. Mondgestein mit dieser Zusammensetzung war bisher noch nie gefunden worden, und die Forscher um Li Chunlai (李春来, *1965), stellvertretender Direktor der Nationalen Astronomischen Observatorien,[53] kamen zu dem Schluss, dass es sich mit großer Wahrscheinlichkeit um Mantelmaterial handelt, das bei der Entstehung des Finsen-Kraters ausgeworfen worden war, also um Material aus der Schicht unterhalb der auf der Mondrückseite 150 km dicken Kruste.[54][55][56]

Am 15. März 2019 veröffentlichten Li Chunlai und seine Kollegen ihren Bericht in der britischen Fachzeitschrift Nature.[57] In einem in derselben Ausgabe veröffentlichten Kommentar stimmte Patrick Pinet, stellvertretender Direktor des Institut de Recherches en Astrophysique et Planétologie der Universität Paul Sabatier in Toulouse und einer der Betreuer des dem chinesischen VNIS ähnlichen OMEGA Visible and Infrared Mineralogical Mapping Spectrometers an Bord der europäischen Mars-Express-Sonde,[58] den Ergebnissen der chinesischen Forscher im Prinzip zu, regte aber an, dass Jadehase 2 im weiteren Verlauf nicht nur den feinkörnigen Boden, sondern auch das reflektierte Licht von größeren Felsbrocken untersuchen sollte.[59][60]

Derzeit liegt die Priorität der Forscher um Li Chunlai jedoch darin, den Rover etwa 2 km nach Südwesten zu steuern. Der Landeplatz von Chang'e-4 befindet sich genau am Rand der Zone, in der Auswurfmaterial vom Finsen-Krater, das seinerzeit strahlenförmig in alle Richtungen geschleudert worden war, auf der Mondoberfläche liegt. Wenn es gelingt, den Rover 2 km radial vom Finsen-Krater wegzufahren, müsste er laut den von den Orbitern Chang'e-1 und Chang'e-2 gemachten Fotos und Spektrogrammen auf nicht von Mantelmaterial kontaminierten Basalt-Regolith stoßen, den die Wissenschaftler zu Vergleichszwecken untersuchen wollen.[61] Aufgrund des unebenen Geländes ist dies jedoch nicht einfach. Am 4. November 2019, am Ende des 11. Mondtags, befand sich der Rover 218 m nordwestlich des Landers.[62]

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. 雷丽娜: 我国嫦娥四号任务将实现世界首次月球背面软着陆. In: http://www.gov.cn. 2. Dezember 2015, abgerufen am 7. Mai 2019 (chinesisch).
  2. Erste Landung auf Mond-Rückseite geglückt, Tagesschau.de vom 3. Januar 2019; abgerufen am 3. Januar 2019
  3. Sputnik: China Prepares for Breakthrough Chang'e 4 Moon Landing in 2018. Abgerufen am 10. Dezember 2018 (englisch).
  4. Echo Huang, Echo Huang: China lays out its ambitions to colonize the moon and build a “lunar palace”. Abgerufen am 10. Dezember 2018 (englisch).
  5. Stuart Clark: China’s moon mission to boldly go a step further. In: The Guardian. 31. Dezember 2017, ISSN 0261-3077 (theguardian.com [abgerufen am 10. Dezember 2018]).
  6. 雷丽娜: 我国嫦娥四号任务将实现世界首次月球背面软着陆. In: http://www.gov.cn. 2. Dezember 2015, abgerufen am 7. Mai 2019 (chinesisch).
  7. Leonard David, Space com's Space Insider Columnist | March 17, 2015 08:00am ET: China Outlines New Rockets, Space Station and Moon Plans. Abgerufen am 10. Dezember 2018.
  8. Paul D. Spudis: China’s Moon Missions Are Anything But Pointless. Abgerufen am 10. Dezember 2018 (englisch).
  9. Leonard David, Space com's Space Insider Columnist | June 9, 2016 04:14pm ET: To the Far Side of the Moon: China's Lunar Science Goals. Abgerufen am 10. Dezember 2018.
  10. 付毅飞: 嫦娥四号中继星发射成功 人类迈出航天器月背登陆第一步. In: http://news.china.com.cn. 22. Mai 2018, abgerufen am 3. Januar 2019 (chinesisch).
  11. a b Luyuan Xu: How China's lunar relay satellite arrived in its final orbit. In: The Planetary Society. 25. Juni 2018, archiviert vom Original am 17. Oktober 2018; abgerufen am 10. Dezember 2018 (englisch).
  12. “龙江二号”微卫星圆满完成环月探测任务,受控撞月. In: clep.org.cn. 2. August 2019, abgerufen am 8. August 2019 (chinesisch).
  13. a b Pioneering astronomy. Abgerufen am 10. Dezember 2018.
  14. The scientific objectives and payloads of Chang’E−4 mission. In: Planetary and Space Science. Band 162, 1. November 2018, ISSN 0032-0633, S. 207–215, doi:10.1016/j.pss.2018.02.011 (sciencedirect.com [abgerufen am 10. Dezember 2018]).
  15. Chang'e-4 lunar far side satellite named 'magpie bridge' from folklore tale of lovers crossing the Milky Way. Abgerufen am 10. Dezember 2018.
  16. 赵磊: 探月工程嫦娥四号探测器成功发射,开启人类首次月球背面软着陆探测之旅. In: http://cn.chinadaily.com.cn. 8. Dezember 2018, abgerufen am 6. Januar 2019 (chinesisch).
  17. Chang’e 3, 4 (CE 3, 4) / Yutu. Abgerufen am 10. Dezember 2018.
  18. Roboter an Bord der "Chang'e 4": Chinas Mond-Rover rollt los - spiegel.de
  19. 倪伟: “嫦娥四号”月球车首亮相面向全球征名 年底奔月. In: http://www.xinhuanet.com. 16. August 2018, abgerufen am 6. Januar 2019 (chinesisch).
  20. 祝梅: 浙江大学光电科学与工程学院教授徐之海—我向宇宙奔跑不停步. In: zjnews.zjol.com.cn. 8. Februar 2019, abgerufen am 29. April 2019 (chinesisch).
  21. 光电科学与工程学院2018年度“我为学科添光彩”突出案例出炉. In: zju.edu.cn. 22. März 2019, abgerufen am 29. April 2019 (chinesisch).
  22. a b c The scientific objectives and payloads of Chang’E−4 mission. In: Planetary and Space Science. Band 162, 1. November 2018, ISSN 0032-0633, S. 207–215, doi:10.1016/j.pss.2018.02.011 (sciencedirect.com [abgerufen am 10. Dezember 2018]).
  23. 纪奕才、吴伟仁 et al.: 在月球背面进行低频射电天文观测的关键技术研究. In: jdse.bit.edu.cn. 28. März 2017, abgerufen am 30. Juli 2019 (chinesisch).
  24. 侯东辉, Robert Wimmer-Schweingruber, Sönke Burmeister et al.: 月球粒子辐射环境探测现状. In: jdse.bit.edu.cn. 26. Februar 2019, abgerufen am 12. September 2019 (chinesisch).
  25. Denis Schimmelpfennig: Raketenstart erfolgreich: Chinesische Sonde mit Kieler Experiment auf dem Weg zum Mond. In: uni-kiel.de. 7. Dezember 2018, abgerufen am 12. Mai 2019.
  26. Robert Wimmer-Schweingruber et al.: The Lunar Lander Neutron & Dosimetry (LND) Experiment on Chang’E4. In: hou.usra.edu. Abgerufen am 12. Mai 2019 (englisch).
  27. 国家航天局交接嫦娥四号国际载荷科学数据 发布月球与深空探测合作机会. In: clep.org.cn. 18. April 2019, abgerufen am 12. Mai 2019 (chinesisch).
  28. Change-4 Probe lands on the moon with “mysterious passenger” of CQU
  29. 李依环、白宇: “太空棉”长出嫩芽 嫦娥四号完成人类首次月面生物试验. In: scitech.people.com.cn. 15. Januar 2019, abgerufen am 17. Januar 2019 (chinesisch).
  30. 蒋云龙: 月球上的第一片绿叶. In: scitech.people.com.cn. 16. Januar 2019, abgerufen am 17. Januar 2019 (chinesisch). Enthält Trickfilm mit Erläuterung des Biosphärenexperiments.
  31. Andrew Jones: Lunar nighttime brings end to Chang'e-4 biosphere experiment and cotton sprouts. In: gbtimes.com. 16. Januar 2019, abgerufen am 20. Januar 2019 (englisch).
  32. 郭泽华: 月球上的嫩芽现在咋样了? In: chinanews.com. 15. Januar 2019, abgerufen am 20. Januar 2019 (chinesisch).
  33. Sweden joins China's historic mission to land on the far side of the Moon in 2018. Abgerufen am 10. Dezember 2018.
  34. Discovering the Sky at the Longest Wavelengths. In: astron.nl. Abgerufen am 30. Juli 2019 (englisch).
  35. Heino Falcke, Hong Xiaoyu et al.: DSL: Discovering the Sky at the Longest Wavelengths. In: astron.nl. Abgerufen am 30. Juli 2019 (englisch).
  36. Marc Klein Wolt: Netherlands-China Low-Frequency Explorer (NCLE). In: ru.nl. Abgerufen am 30. Juli 2019 (englisch).
  37. a b Paul D. Spudis: China’s Journey to the Lunar Far Side: A Missed Opportunity? Abgerufen am 10. Dezember 2018 (englisch).
  38. 嫦娥四号任务圆满成功 北京航天飞行控制中心致信空天院. In: aircas.cas.cn. 12. Januar 2019, abgerufen am 31. Mai 2019 (chinesisch).
  39. 刘锟: “玉兔二号”月球车顺利踏上月球背面!后续还将完成哪些使命? In: jfdaily.com. 4. Januar 2019, abgerufen am 7. Mai 2019 (chinesisch).
  40. 嫦娥四号成功实现人类探测器首次月球背面软着陆 上海技物所3台载荷均工作正常. In: sitp.ac.cn. 7. Januar 2019, abgerufen am 17. Mai 2019 (chinesisch).
  41. 叶培建院士带你看落月. In: cast.cn. 3. Januar 2019, abgerufen am 17. Mai 2019 (chinesisch).
  42. 嫦娥四号探测器实拍降落视频发布. In: clep.org.cn. 11. Januar 2019, abgerufen am 11. Mai 2019 (chinesisch). Enthält von der Landekamera aufgenommenes Video der letzten 6 Minuten des Abstiegs und Schaubild mit Erläuterung der einzelnen Phasen der Landung.
  43. Helga Rietz: Schwebender Staub auf dem Mond. In: deutschlandfunk.de. 1. August 2012, abgerufen am 14. Mai 2019.
  44. Forscher warnen vor Kurzschlüssen auf dem Mond. In: spiegel.de. 5. Februar 2007, abgerufen am 14. Mai 2019.
  45. 刘晓艳: 天津大学空间力学团队助“力”国家空间探测工程 多项科研成果应用于“嫦娥”系列和火星探测计划. In: tju.edu.cn/. 30. Januar 2019, abgerufen am 13. Mai 2019 (chinesisch). Die von der Gruppe Weltraummechanik entwickelte Methode soll auch Ende 2019 bei Chang'e-5 sowie im April 2021 bei der Landung der Marssonde Yinghuo-2 zum Einsatz kommen.
  46. 唐艳飞: 嫦娥四号成功着陆月背!传回世界首张近距拍摄月背影像图. In: guancha.cn. 3. Januar 2019, abgerufen am 6. Januar 2019 (chinesisch).
  47. 陈海波: 月球上多了5个中国名字. In: xinhuanet.com. 16. Februar 2019, abgerufen am 26. September 2019 (chinesisch).
  48. Planetary Names: Landing site name: Statio Tianhe on Moon. In: planetarynames.wr.usgs.gov. 18. Februar 2019, abgerufen am 26. September 2019 (englisch).
  49. Liu Jianjun, Li Chunlai et al.: Descent trajectory reconstruction and landing site positioning of Chang’e-4 on the lunar farside. In: nature.com. 24. September 2019, abgerufen am 26. September 2019 (englisch).
  50. Dirk Eidemüller: Der Mond zeigt seinen Mantel. In: pro-physik.de. 15. Mai 2019, abgerufen am 16. Mai 2019.
  51. 月背探测预选着陆区科学目标分析. In: jdse.bit.edu.cn. Abgerufen am 18. Mai 2019 (chinesisch).
  52. 嫦娥四号成功实现人类探测器首次月球背面软着陆 上海技物所3台载荷均工作正常. In: sitp.ac.cn. 7. Januar 2019, abgerufen am 16. Mai 2019 (chinesisch).
  53. 李春来. In: nao.cas.cn. Abgerufen am 16. Mai 2019 (chinesisch).
  54. 嫦娥四号月球背面重大成果:发现月幔源物质初步证据. In: news.kedo.gov.cn. 16. Mai 2019, abgerufen am 16. Mai 2019 (chinesisch).
  55. 国家天文台基于嫦娥四号探测数据发现月球背面幔源物质初步证据. In: nao.cas.cn. 16. Mai 2019, abgerufen am 16. Mai 2019 (chinesisch).
  56. China's Chang'E 4 mission discovered new "secrets" from far side of the moon. In: english.nao.cas.cn. 15. Mai 2019, abgerufen am 16. Mai 2019 (englisch).
  57. Li Chunlai et al.: Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials. In: nature.com. 15. Mai 2019, abgerufen am 16. Mai 2019 (englisch).
  58. Patrick Pinet. In: sci.esa.int. 4. November 2011, abgerufen am 16. Mai 2019 (englisch).
  59. Patrick Pinet: The Moon’s mantle unveiled. In: nature.com. 15. Mai 2019, abgerufen am 16. Mai 2019 (englisch).
  60. Daniela Albat: Blick auf den Mantel des Mondes – Mondrover "Jadehase 2" identifiziert lunares Mantelmaterial in großem Kraterbecken. In: scinexx.de. 16. Mai 2019, abgerufen am 16. Mai 2019.
  61. 嫦娥四号首批科学成果发表 玉兔二号揭示月球深部物质. In: clep.org.cn. 16. Mai 2019, abgerufen am 18. Mai 2019 (chinesisch).
  62. 嫦娥四号着陆器和巡视器完成第十一月昼工作,进入第十一月夜. In: clep.org.cn. 4. November 2019, abgerufen am 6. November 2019 (chinesisch).