„Erdgas“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
K Änderungen von 79.225.160.188 (Diskussion) auf die letzte Version von Brodkey65 zurückgesetzt
+Vorlage
Zeile 53: Zeile 53:


==== Strom- und Wärmeproduktion ====
==== Strom- und Wärmeproduktion ====
Erdgas wird in Deutschland und in vielen anderen Industrieländern im Wesentlichen zur Versorgung mit Nutzwärme in der Industrie und in Wohngebäuden genutzt. Gegenwärtig (2013) ist Erdgas (mit 25 % Anteil in Deutschland und 13 % in der Schweiz) bei fossilen Energieträgern ein sehr wichtiger Energierohstoff. Erdgas wird nach Prognosen der [[Internationale Atomenergie-Organisation|Internationalen Atomenergiebehörde]] (IAEA) bis zum Jahre 2080 mit einem Anteil von mehr als 50 % zum wichtigsten fossilen Energieträger werden.<ref name="Landolt">Landolt Börnstein: ''New Series VIII'', 3A, Natural Gas Exploitaition Technologies, Springer, 2002, S. 40 ff. https://doi.org/10.1007/10696439_5</ref>
Erdgas wird in Deutschland und in vielen anderen Industrieländern im Wesentlichen zur Versorgung mit Nutzwärme in der Industrie und in Wohngebäuden genutzt. Gegenwärtig (2013) ist Erdgas (mit 25 % Anteil in Deutschland und 13 % in der Schweiz) bei fossilen Energieträgern ein sehr wichtiger Energierohstoff. Erdgas wird nach Prognosen der [[Internationale Atomenergie-Organisation|Internationalen Atomenergiebehörde]] (IAEA) bis zum Jahre 2080 mit einem Anteil von mehr als 50 % zum wichtigsten fossilen Energieträger werden.<ref name="Landolt">Landolt Börnstein: ''New Series VIII'', 3A, Natural Gas Exploitaition Technologies, Springer, 2002, S. 40 ff. {{doi|10.1007/10696439_5}}</ref>


In einigen Ländern spielt auch die Stromproduktion aus Gas eine große Rolle (Russland: ca. 50 % Anteil). In Deutschland ist der Anteil von Erdgas an der Stromerzeugung seit einigen Jahren rückläufig, er betrug 2015 noch 9,1 %.<ref>Hans-Joachim Ziesing: ''Energieverbrauch in Deutschland im Jahr 2015.'' Arbeitsgemeinschaft Energiebilanzen e. V., Berlin 2016 ([http://www.ag-energiebilanzen.de/index.php?article_id=29&fileName=ageb_jahresbericht2015_20160317_final.pdf PDF-Datei]; 441&nbsp;kB), S.&nbsp;17</ref> Erdgas wird in [[Gasturbinenkraftwerk]]en und in [[GuD-Kraftwerk]]en verstromt. Diese Kraftwerke werden in Deutschland in erster Linie zur Deckung von [[Spitzenlast]] verwendet, die Leistung der dort genutzten [[Gasturbine]]n kann – im Vergleich zu Kohle- und Atomkraftwerken – gut (das heißt: zeitnah) geregelt werden.
In einigen Ländern spielt auch die Stromproduktion aus Gas eine große Rolle (Russland: ca. 50 % Anteil). In Deutschland ist der Anteil von Erdgas an der Stromerzeugung seit einigen Jahren rückläufig, er betrug 2015 noch 9,1 %.<ref>Hans-Joachim Ziesing: ''Energieverbrauch in Deutschland im Jahr 2015.'' Arbeitsgemeinschaft Energiebilanzen e. V., Berlin 2016 ([http://www.ag-energiebilanzen.de/index.php?article_id=29&fileName=ageb_jahresbericht2015_20160317_final.pdf PDF-Datei]; 441&nbsp;kB), S.&nbsp;17</ref> Erdgas wird in [[Gasturbinenkraftwerk]]en und in [[GuD-Kraftwerk]]en verstromt. Diese Kraftwerke werden in Deutschland in erster Linie zur Deckung von [[Spitzenlast]] verwendet, die Leistung der dort genutzten [[Gasturbine]]n kann – im Vergleich zu Kohle- und Atomkraftwerken – gut (das heißt: zeitnah) geregelt werden.

Version vom 29. September 2017, 18:15 Uhr

Kugelgasbehälter

Erdgas ist ein brennbares, natürlich entstandenes Gasgemisch, das in unterirdischen Lagerstätten vorkommt. Es tritt häufig zusammen mit Erdöl auf, da es auf ähnliche Weise entsteht. Erdgas besteht hauptsächlich aus hochentzündlichem Methan, die genaue Zusammensetzung ist aber abhängig von der Lagerstätte.[1][2]

Als fossiler Energieträger dient es hauptsächlich der Beheizung von Wohn- und Gewerberäumen,[3] als Wärmelieferant für thermische Prozesse in Gewerbe und Industrie (z. B. in Großbäckereien, Ziegeleien, Zementwerken, Gießereien und Metallhütten[4]), zur elektrischen Stromerzeugung, als Treibstoff für Schiffe und Kraftfahrzeuge.[5] Hinzu treten mengenmäßig bedeutsame Anwendungen als Reaktionspartner in chemischen Prozessen, wo ebenfalls sein Energiegehalt genutzt wird. Diese sind beispielsweise die Ammoniaksynthese im Haber-Bosch-Verfahren (Stickstoffdüngemittel), die Eisenerzreduktion im Hochofenprozess oder die Herstellung von Wasserstoff.

Eigenschaften

Strukturformel von Methan

Allgemeines

Natürliches (rohes) Erdgas ist ein kohlenwasserstoff­haltiges Gasgemisch, dessen chemische Zusammensetzung je nach Fundstätte beträchtlich schwankt.

Der Hauptbestandteil ist meist Methan. Dessen Anteil liegt in vielen Erdgaslagerstätten zwischen 75 und 99 Mol-%. Rohgas enthält häufig auch größere Anteile an Ethan (1 % bis 15 %), Propan (1 % bis 10 %), Butan, Ethen und Pentane. Ein solches Gasgemisch wird nasses Erdgas genannt, was nichts mit dem meist auch vorhandenen Wasserdampfanteil zu tun hat, sondern die unter Druck leicht verflüssigbaren gasförmigen Kohlenwasserstoffe meint, die im Englischen auch Natural Gas Liquids (NGL) genannt werden. Rohgas mit einem sehr niedrigen Methan-Anteil (z. B. 30 %) wird Magergas genannt.

Weitere Nebenbestandteile von Rohgas können sein: Schwefelwasserstoff (häufig zwischen 0 % und 35 %[6]), der durch Entschwefelung des Erdgases entfernt wird, Stickstoff (häufig zwischen 0 % und 15 %, in Extremfällen bis zu 70 %[6]), Kohlenstoffdioxid (häufig zwischen 0 % und 10 %) und Wasserdampf. Rohgas mit einem bedeutenden Schwefelwasserstoff-Gehalt wird Sauergas genannt. Zudem kann es einen erheblichen Gehalt an stark riechenden organischen Schwefelverbindungen enthalten.

Schwefelwasserstoff, Kohlenstoffdioxid und Wasser müssen mit Verfahren wie der Gaswäsche zunächst abgetrennt werden, da sie zum Teil giftig sind, zu Umweltschadstoffen (beispielsweise Schwefeldioxid) verbrennen, korrosiv wirken oder zu Hydratbildung neigen[7]. Das können für eine Bohrinsel bis zu 28.000 Tonnen pro Tag sein. Von großem Wert sind Erdgase, die bis zu 7 % Helium enthalten. Diese sind die Hauptquelle der Heliumgewinnung.

Neben den genannten Gasen kann Rohgas auch etwas elementaren Schwefel (einige Gramm pro Kubikmeter) und Quecksilber (wenige Milligramm pro Kubikmeter) enthalten.[8] Auch diese Stoffe müssen zuvor abgetrennt werden, da sie Schäden an der Fördereinrichtung hervorrufen.

Physikalisch-technische Eigenschaften

Erdgas ist ein brennbares, farb- und in der Regel geruchloses Gas mit einer Zündtemperatur von rund 600 °C. Es besitzt eine geringere Dichte als Luft. Zur vollständigen Verbrennung von 1 Kubikmeter Erdgas werden ungefähr 10 Kubikmeter Luft benötigt. Bei der Verbrennung entstehen als Reaktionsprodukte im Wesentlichen Wasser und Kohlenstoffdioxid. Daneben können noch geringe Mengen Stickoxide, Schwefeldioxid, Kohlenmonoxid und Staub entstehen. Um eventuelle Leitungslecks olfaktorisch wahrnehmen zu können, wird aufbereitetes Erdgas vor der Einspeisung ins Netz mit einem Duftstoff versehen. Bei dieser Odorierung werden vorrangig Thioether (beispielsweise Tetrahydrothiophen) oder Alkanthiole (etwa Ethylmercaptan und tertiäres Butylmercaptan) in geringsten Mengen zugesetzt. Diese Duftstoffe, und nicht die im Rohgas enthaltenen Verbindungen, sind für den klassischen Gasgeruch verantwortlich.

Aus technischer Sicht ist Erdgas ein Brenngas. Innerhalb der Brenngase wird es gemäß dem DVGW Arbeitsblatt G260[9] zur Gasfamilie 2 (methanreiche Gase) gerechnet. Diese werden nach ihrem Wobbe-Index, der ein Maß für den Energiegehalt (Energiedichte) ist und von der genauen Zusammensetzung des Gases abhängt, in zwei Typen unterschieden: H-Gas (von engl. high [calorific] gas, hoher Energiegehalt) hat einen höheren Anteil an Kohlenwasserstoffen und einen entsprechend geringen Inertgas­anteil (bei Erdgas vor allem Stickstoff und Kohlenstoffdioxid), während L-Gas (von engl. low [calorific] gas, niedriger Energiegehalt) einen höheren Inertgasanteil aufweist. In Deutschland verwendetes H-Erdgas aus den GUS-Staaten besteht aus circa 98 % Methan, 1 % weiteren Alkanen (Ethan, Propan, Butan, Pentan) und 1 % Inertgasen. H-Erdgas aus der Nordsee besteht aus circa 89 % Methan, 8 % weiteren Alkanen und 3 % Inertgasen. L-Erdgas aus den Niederlanden und Norddeutschland[10] besteht aus etwa 85 % Methan, 4 % weiteren Alkanen und 11 % Inertgasen. Der Brennwert Hs (früher Ho) variiert entsprechend zwischen 10 kWh/kg (36 MJ/kg) bzw. 8,2 kWh/m³ (30 MJ/m³) bei L-Gas und 14 kWh/kg (50 MJ/kg) bzw. 11,1 kWh/m³ (40 MJ/m³) bei H-Gas. Der Heizwert Hi (früher Hu) liegt jeweils etwa 10 % unter diesen Werten. Die Dichte variiert zwischen 0,700 kg/m³ (H-Gas) und 0,840 kg/m³ (L-Gas), der Siedepunkt entspricht in etwa dem von Methan (−161 °C).

Bei der Klassifikation von Prüfgasen für Gasgeräte werden nach (DIN) EN 437 Typ LL (low-low) und Typ E (Europe) unterschieden. Dabei entspricht Typ LL dem L-Gas und Typ E dem H-Gas.[11]

Entstehung

Übersicht über die anaerobe Verwertung von polymeren Substraten und Lipiden durch Mikroorganismen. Bei den meisten Erdgasvorkommen ist der überwiegende Teil des Gases jedoch durch thermische Umwandlung bereits anaerob teilweise zersetzter organischer Substanz entstanden.

Rohes Erdgas entsteht oft durch die gleichen geologischen Prozesse, die auch zur Entstehung von Erdöl führen. Erdöl und Erdgas kommen daher nicht selten zusammen in einer Lagerstätte vor. Dieses Erdgas entstand in geologischen Zeiträumen aus Massen von abgestorbenen und abgesunkenen marinen Kleinstlebewesen (überwiegend einzellige Algen), die zunächst unter sauerstofffreien Bedingungen am Meeresboden in einen Faulschlamm (Sapropel) umgewandelt wurden. Im Laufe von Jahrmillionen kann dieser durch Subsidenz in tiefere Regionen der oberen Erdkruste versenkt und dort hohen Drücken und vor allem hohen Temperaturen ausgesetzt werden, die für die Umwandlung der organischen Substanzen in Erdgas sorgen (siehe auch Entstehung von Erdöl). Auch Steinkohle­flöze enthalten Erdgas. Dieses Gas stellt als schlagende Wetter eine große Gefahr im Kohlebergbau dar. Als Kohleflözgas wird es mittels Bohrungen aus tiefliegenden Steinkohleflözen gewonnen (siehe auch Lagerstättentypen).

Wirtschaftlich lohnende Erdgasmengen können aber auch infolge einer mikrobiellen Zersetzung organischer Sedimente an Ort und Stelle entstehen, das heißt ohne bedeutende thermische Prozesse und ohne wesentliche Migration. Gasvorkommen mit dieser Entstehungsgeschichte finden sich zum Beispiel im Voralpenland Oberösterreichs und Oberbayerns sowie im Wiener Becken. Mit einem Alter von nur 20 Millionen Jahren handelt es sich um geologisch sehr junge Lagerstätten.

Das im Erdgas enthaltene Helium entstammt radioaktivem Alpha-Zerfall von Elementen, die als Bestandteile von Mineralen in den magmatischen Gesteinen des Grundgebirges eines Sedimentbeckens enthalten sind. Das sehr mobile Helium migriert, wie die gasförmigen Kohlenwasserstoffe, im Poren- und Kluftraum der Gesteine in Richtung der Erdoberfläche und reichert sich in konventionellen Erdgaslagerstätten an.

Verwendung

Geschichte als Energierohstoff

Schon vor etwa 2.000 Jahren nutzten die Chinesen Erdgas zur Salzgewinnung.

Im Jahr 1626 berichteten französische Missionare über „brennende Quellen“ in flachen Gewässern von Nordamerika. Eine größere industrielle Nutzung von Erdgas begann in den USA im Jahr 1825 im Ort Fredonia im Westen des Bundesstaates New York. Hier legte ein gewisser William H. Hart einen Schacht zur Erdgasgewinnung für die Beleuchtung einer Mühle und eines Wohnhauses an. Hart nutzte Erdgas auch zur Beleuchtung eines Leuchtturms am Eriesee. Er gründete im Jahr 1858 die erste Erdgasgesellschaft, die Fredonia Gas Light Company. Ab 1884 wurde Erdgas in Pittsburgh in der Glas- und Stahlindustrie verwendet. Das Gas wurde via Pipeline aus Murrysville, heute etwa 35 km östlich von Pittsburgh gelegen, in die Stadt geliefert. Damit war Pittsburgh die erste Stadt der Welt, die an eine Erdgaspipeline angeschlossen war.[12]

Nordamerika, insbesondere die USA, hatte bis 1950 die höchste Nutzung von Erdgas der Welt (US-Förderanteil 1950 etwa 92 % der Weltproduktion, 1960 US-Förderanteil der Weltproduktion 80,2 %).[13] In Westdeutschland betrug die Energienutzung von Erdgas Anfang der 1960er Jahre nur 1 % der fossilen Primärenergie. 1970 waren es etwa 5 % der fossilen Primärenergie in Westdeutschland.[13]

Erdgas wurde ursprünglich bei der Gewinnung von Erdöl lediglich abgefackelt.[14] Zunächst wurde Erdgas in den USA (seit Anfang der 1920er Jahre) und später in Europa (seit den 1960er Jahren) als Energierohstoff für die Wirtschaft genutzt.

In einigen Ländern wird Erdgas auch heute noch abgefackelt, da der Transport des Gases kostenaufwändig ist. In den USA wurden in den letzten Jahren viele Gas-und-Dampf-Kombikraftwerke zur Stromgewinnung auf Erdgasbasis gebaut, diese haben einen sehr hohen Wirkungsgrad (60 %) und können dazu noch die Abwärme als Fernwärme zur Beheizung von Wohnhäusern nutzen.

Nutzung

Zapfsäule für komprimiertes Erdgas (CNG) an einer Tankstelle in Třebíč, Tschechien

Strom- und Wärmeproduktion

Erdgas wird in Deutschland und in vielen anderen Industrieländern im Wesentlichen zur Versorgung mit Nutzwärme in der Industrie und in Wohngebäuden genutzt. Gegenwärtig (2013) ist Erdgas (mit 25 % Anteil in Deutschland und 13 % in der Schweiz) bei fossilen Energieträgern ein sehr wichtiger Energierohstoff. Erdgas wird nach Prognosen der Internationalen Atomenergiebehörde (IAEA) bis zum Jahre 2080 mit einem Anteil von mehr als 50 % zum wichtigsten fossilen Energieträger werden.[15]

In einigen Ländern spielt auch die Stromproduktion aus Gas eine große Rolle (Russland: ca. 50 % Anteil). In Deutschland ist der Anteil von Erdgas an der Stromerzeugung seit einigen Jahren rückläufig, er betrug 2015 noch 9,1 %.[16] Erdgas wird in Gasturbinenkraftwerken und in GuD-Kraftwerken verstromt. Diese Kraftwerke werden in Deutschland in erster Linie zur Deckung von Spitzenlast verwendet, die Leistung der dort genutzten Gasturbinen kann – im Vergleich zu Kohle- und Atomkraftwerken – gut (das heißt: zeitnah) geregelt werden.

Treibstoff für Kraftfahrzeuge

Erdgas wird seit einigen Jahren auch verstärkt als Kraftstoff für entsprechend motorisierte Kraftfahrzeuge verwendet. Lagerung, Transport und Betankung erfolgen entweder als Compressed Natural Gas (CNG, komprimiertes Erdgas), das heißt stark verdichtetes, aber nach wie vor gasförmiges Erdgas, oder als Liquified Natural Gas (LNG, verflüssigtes Erdgas), das heißt durch starke Abkühlung verflüssigtes und durch Lagerung in Druckbehältern flüssig gehaltenes Erdgas.

Erdgas als Treibstoff für Autos ist nicht zu verwechseln mit Autogas. Dieser auch mit NGL (Natural Gas Liquids) oder LPG (Liquefied Petroleum Gas) abgekürzte Brennstoff enthält kein Methan, sondern besteht überwiegend aus den langkettigeren Alkanen Propan und Butan, die im Erdgas nur in geringen Mengen vorhanden sind. Das an Tankstellen angebotene Autogas entstammt meistens der Erdölraffination.

Der Vorteil von Erdgas und Autogas liegt in der gegenüber Benzin und Diesel saubereren Verbrennung. Dies liegt im Fall von Erdgas / CNG einerseits daran, dass Erdgas im Verbrennungsraum bereits homogen gasförmig vorliegt, und nicht in zerstäubter Form wie Benzin und Diesel, andererseits daran, dass die Molekülketten nur ca. halb so viel Kohlenstoffatome im Verhältnis zu den Wasserstoffatomen enthalten wie die in Benzin und Diesel, also bei der Verbrennung mit Sauerstoff mehr Wasser (H2O) und weniger CO2 und Ruß entsteht. Daher genießen beide Kraftstoffe in Deutschland steuerliche Vergünstigungen. Die Steuerbegünstigung für CNG soll bis Ende 2026 gewährt werden, wird aber ab 2024 sukzessive verringert [17]. Die Energiesteuer für Erdgas beträgt derzeit 18,03 ct/kg. In Deutschland kann zwischen 0,70 Euro/kg und 1,26 Euro/kg getankt werden. Der Durchschnittspreis beträgt 1,03 Euro/kg (Stand März 2016).[18]

Eine Alternative zu reinem Erdgas ist HCNG, eine Mischung aus komprimiertem Erdgas und Wasserstoff, mit der jedes Fahrzeug betrieben werden kann, das über einen herkömmlichen Erdgasmotor verfügt. Das Gleiche gilt für Biogas.

Preisentwicklung

Erdgaspreise in Japan, Deutschland und den USA
(in US-Dollar pro Mio. Btu)

Die Gaspreise erreichten 2008/09 ihren Höhepunkt. Der anschließend einsetzende Shale-Gas-Boom in den USA sorgte dort für deutlich niedrigere Erdgaspreise als im Rest der Welt.[19]

Zum Jahresende 2015 war jedoch ein globales Überangebot erreicht. Mit den zunehmenden Möglichkeiten des LNG-Imports mit Schiffen nach Europa kam es auch hier zu einem Zusammenbruch der Großhandelspreise.[20]

2016 nahm die US-Firma Cheniere Energy den LNG-Export nach Europa auf.[20] Die Chemiefirma Ineos bezieht seit September 2016 Ethan aus den USA.[21]

Vorkommen

1844 wurde in Europa erstmals Erdgas im Gebiet des Wiener Ostbahnhofs gefunden. 1892 folgten Funde bei Wels. Im 20. und 21. Jahrhundert ausgebeutete große Gasfelder sind das Troll-Feld in Norwegen, das Nord-Feld in Katar und das Gasfeld Urengoi in Russland. Des Weiteren werden noch große, unerschlossene Gasfelder im Iran vermutet. Methan in Gashydraten wird in großer Menge nicht nur im Bereich des Kontinentalschelfs vermutet, sondern auch in Permafrostböden in Sibirien, Kanada und Alaska.

Die Vereinigten Staaten sind neben Russland das Land mit der höchsten Förderrate für Erdgas. Sie förderten im Jahr 2006 etwa 524 Milliarden Kubikmeter Erdgas. Bis zum Jahr 1999 hatten sie 94.000 Bohrungen im eigenen Land vorgenommen.[22]

Suche nach Lagerstätten

Ziel der Erdgasexploration ist das Auffinden von Erdgaslagerstätten. Im Vordergrund des Interesses stehen Lagerstättentypen, die mittels herkömmlicher Förderverfahren mit verhältnismäßig geringem Aufwand ausgebeutet werden können. Solche Vorkommen werden entsprechend als konventionelle Vorkommen bezeichnet. Erkundungen, die von Geologen und Geophysikern privater oder staatlicher Erdöl- und Erdgasfirmen unternommen werden, konzentrieren sich daher auf die Identifizierung geologischer Verhältnisse, die die Anwesenheit konventioneller Vorkommen im Untergrund wahrscheinlich machen.

Konventionelle Erdgasvorkommen bestehen aus einem porösen und permeablen, mit Erdgas gesättigten Speichergestein, das sich unterhalb einer geringporösen impermeablen Gesteinsschicht, dem Deckgestein, befindet. Speicher und Deckgestein müssen zusätzlich Teil einer geologischen Struktur sein, die erst die Anreicherung von Gas zu abbauwürdigen Mengen ermöglicht. Solche Strukturen heißen Erdgasfallen. Das Erdgas kann so weder nach oben noch seitlich entweichen, und steht, da es sich tief unter der Erde befindet, unter hohem Druck.

Die Auswertung von Satelliten- oder Luftbildern oder die mittels klassischer Kartierung aufgenommene Oberflächengeologie können dazu dienen, fossile Sedimentbecken zu identifizieren. Möglicherweise geben im Gelände angetroffene Erdgas-Austritte (z. B. Schlammvulkane) direkte Hinweise auf Gasvorkommen im Untergrund. Erste nähere Untersuchungen der Geologie des tieferen Untergrundes erfolgen oft durch seismische Messungen. Dabei werden Druckwellen (im Prinzip Schall), erzeugt mittels Sprengungen in flachen Bohrlöchern oder mit Hilfe von Vibratoren, in den Erdboden geschickt. Die Schallwellen werden dabei von bestimmten Erdschichten, sogenannten Reflektoren, zur Erdoberfläche zurückgeworfen, wo sie von hochsensiblen Erschütterungsmessern, sogenannten Geophonen registriert werden. Aus den Zeitdifferenzen zwischen „Abschuss“ der Welle und Registrierung durch die Geophone ergibt sich die Tiefenlage einzelner Reflektoren. Wenn Schallquellen und Messstellen netzförmig an der Erdoberfläche angeordnet sind, kann aus den ermittelten Daten ein dreidimensionales seismisches Modell des Untergrundes erstellt werden (3D-Seismik).[22] Aus diesem Modell lassen sich Erkenntnisse über die Geologie des Untergrundes gewinnen, anhand derer festgelegt wird, auf welche Bereiche der seismisch erkundeten Region sich die weitere Explorationsarbeit konzentriert.

An besonders vielversprechenden Stellen werden Probebohrungen niedergebracht. Hierbei wird die Interpretation des seismischen Modells mit der tatsächlich erbohrten Geologie abgeglichen und entsprechend verfeinert. Das Antreffen gasgesättigten Sedimentgesteins in einer vorhergesagten Tiefe bestätigt dann die Interpretation einer im seismischen Profil erkennbaren Struktur als Erdgasfalle.

Interessiert man sich nach Beginn der Förderung für Veränderungen des Fluidgehalts einer Lagerstätte, kann eine so genannte 4D-Seismik durchgeführt werden.[22] Hierbei erkennt man die durch die Förderung entstehenden Veränderungen oder noch vorhandene Vorräte einer Lagerstätte.

Lagerstättentypen

Schematische Darstellung der Förderung von Erdöl und Erdgas, links: konventionelle Lagerstätte (mit Erdöl assoziiertes Erdgas), rechts: unkonventionelle Lagerstätten.

Konventionelle Lagerstätten

Der bisher am häufigsten erschlossene Erdgaslagerstättentyp sind Gasvorkommen in porösen und permeablen Gesteinen (z. B. Sandsteine, Massenkalke) unterhalb geringporöser, impermeabler Gesteine (Tonsteine, Mergelsteine, feinkörnige Kalksteine). Das Gas ist hierbei im Porenraum der permeablen Gesteine aus noch größerer Tiefe nach oben gestiegen (migriert), wo der weitere direkte Aufstieg durch das impermeable Deckgestein verhindert wird. Besondere Voraussetzung für die Bildung einer Lagerstätte ist jedoch die Existenz geologischer Strukturen, die eine seitliche Migration des Gases unterhalb des Deckgesteins verhindern und somit überhaupt erst eine Anreicherung größerer Gasmengen im dann als Speichergestein bezeichneten porösen Gestein ermöglichen. Solche Strukturen, die sowohl sedimentären als auch tektonischen Ursprungs sein können, werden Erdgasfallen genannt. Dies können u. a. „ertrunkene“ fossile Riffkörper sein oder die Flanken eines Salzstockes.

Sehr häufig tritt Erdgas aufgrund seiner geringeren Dichte in den obersten Bereichen einer konventionellen Erdöllagerstätte auf. Man spricht hierbei von assoziiertem („mit Öl vergesellschaftetem“) Erdgas. Reine Erdöllagerstätten ohne Gas sind eher die Ausnahme, da sich in Erdölmuttergesteinen stets auch Gas bildet und beides zusammen in die Lagerstätten migriert. Das bei der Erdölgewinnung anfallende Erdgas wird abgetrennt und gesondert verarbeitet oder aber, insbesondere bei der Offshore-Ölförderung, einfach abgefackelt (d. h., noch an Ort und Stelle der Förderung mit einer Gasfackel verbrannt). Weil Erdgas eine deutlich höhere Mobilität als Erdöl besitzt, läuft dessen Migration leichter ab. Deshalb sind reine Erdgaslagerstätten konventionellen Typs, sogenanntes nicht-assoziiertes Erdgas, relativ häufig.

Unkonventionelle Lagerstätten

Als unkonventionell werden Lagerstätten bezeichnet, die nicht dem konventionellen Erdgasfallen-Typ entsprechen und aus denen meist nur mit erheblichem Aufwand Gas gefördert werden kann (z. B. durch sogenanntes Fracking). In den USA werden bereits 40 % der gesamten Gasproduktion aus unkonventionellen Vorkommen gefördert.[23][24]

Kohleflözgas

Auch in Kohleflözen ist Erdgas gebunden. Methan wird von Kohle an seiner großen inneren Oberfläche in bedeutendem Umfang adsorbiert. In größeren Tiefen kann durch den höheren Druck Kohle proportional mehr Erdgas enthalten und entsprechend mehr durch Entspannen und Abpumpen gefördert werden. Kohleflöze können auch durch Untertagevergasung in ein erdgasähnliches Brenngas umgewandelt werden.

In den USA werden 10 % des Erdgases aus Kohleflözen gewonnen, dies waren im Jahr 2002 etwa 40 Milliarden Kubikmeter. In den USA wurden 11.000 Bohrungen durchgeführt, um diesen Lagerstättentyp zu erschließen. In Deutschland werden die Erdgasreserven in Kohleflözen auf etwa 3.000 Milliarden Kubikmeter geschätzt.[22] Weltweit schätzt man die Erdgasreserven in Kohleflözen auf 92.000 bis 195.000 Milliarden Kubikmeter.

Gashydrate

Bei hohem Druck und tiefen Temperaturen bildet Methan zusammen mit Wasser einen eisähnlichen Feststoff, sogenanntes Methanhydrat. Ein Kubikmeter Gashydrat enthält etwa 164 Kubikmeter Methangas. In den Meeresböden der heutigen Kontinentalschelfe und -hänge, ab etwa 300 Meter unterhalb des Meeresspiegels, sowie in Permafrostböden gibt es erhebliche Vorkommen. Das Methan stammt aber vermutlich nur teilweise aus „undichten“ Erdgaslagerstätten. Der andere Teil entstammt der Tätigkeit von Mikroorganismen im Boden bzw. Meeresboden.

Tight Gas

Tight Gas“ findet sich in „zerstörten“ Speichergesteinen (sogenannten tight gas sands oder tight gas carbonates), d. h. in Gesteinen, die einst porös und permeabel genug waren, dass Erdgas dort hinein migrieren konnte. Fortschreitende Diagenese mit verstärkter Kompaktion des Speichergesteins bzw. zusätzlichem Wachstum von Mineralkörnern führte zu einer deutlichen Verringerung des Porenraumes und einem Verlust der Poreninterkonnektivität. Durch den damit einhergehenden Verlust der Permeabilität, ist eine ökonomisch sinnvolle Erdgasförderung mit konventionellen Methoden aus diesen Gesteinen unmöglich.[25]

Nach einer allgemeineren Definition von Tight-Gas-Lagerstätten bezeichnet der Begriff alle nicht-konventionellen Vorkommen, die zwar tief unter der Erde liegen, aber durch herkömmliche Förderverfahren nicht rentabel bewirtschaftet werden können bzw. keine wirtschaftlich lohnenden Mengen an Erdgas liefern.[26] Unter diese Definitionen fallen nicht nur Erdgaslagerstätten in diagenetisch „zerstörten“ Speichergesteinen, sondern auch Schiefergas- und Kohleflözgas-Lagerstätten.

Schiefergas

Im Gegensatz zu Tight Gas im engeren Sinne ist Schiefergas („Shale Gas“) gar nicht erst dazu gekommen, in ein (ursprünglich) poröseres Gestein zu migrieren, sondern befindet sich noch in seinem Muttergestein, einem primär kohlenstoffreichen Tonstein („Ölschiefer“ im weitesten Sinn).[27]

Aquifergas

Außerdem kann eine erhebliche Erdgasmenge in sehr tiefen Grundwasserschichten eines Aquifers gelöst sein.

Vorräte

Die Menge des in Lagerstätten enthaltenen Erdgases liegt laut Schätzungen der Bundesanstalt für Geowissenschaften und Rohstoffe über die weltweiten Erdgasressourcen und -reserven bei 819.000 Milliarden Kubikmeter Erdgas. Dabei liegen Erdgasreserven, d. h. derzeit technisch und wirtschaftlich gewinnbare Mengen, bei 192.000 Milliarden Kubikmetern. Bei weltweit gleichbleibender Erdgasförderung von etwa 3.200 Milliarden Kubikmetern pro Jahr entspricht dies einer statischen Reichweite von etwa 60 Jahren.[28] Diese Zahlen beinhalten die gemeinsame Betrachtung von konventionellem und dem bereits seit einigen Jahren wirtschaftlich geförderten nicht-konventionellen Erdgas und umfasst Schiefergas (Shale Gas), Kohleflözgas (coal bed methane, CBM) sowie Erdgas in dichten Sandsteinen und Karbonaten (Tight Gas). Tight Gas wird derzeit überwiegend in den Vereinigten Staaten gefördert, wobei eine strikte Abgrenzung vom konventionellen Erdgas nicht mehr stattfindet. Auch in Deutschland wird seit Jahren Erdgas aus dichten Sandsteinen produziert und gemeinsam mit konventionellem Erdgas ausgewiesen. Nicht enthalten sind darin die Ressourcen von Aquifergas und Erdgas aus Gashydrat, da derzeit noch offen ist, ob und wann dieses Potenzial kommerziell genutzt werden kann. Insgesamt gibt es hier ein Potenzial von bis zu 1.800.000 Milliarden Kubikmeter.[28]

Zur Lage der konventionellen und unkonventionellen Vorkommen von Erdöl und Erdgas auf der Erde siehe auch Erdölgewinnung.

Erdgasindustrie

Gewinnung

Erdgasaufbereitungsanlage in Niedersachsen (bei Großenkneten)
Erdgasförderanlage in der Nähe von Wettmar

Erdgas wird durch Bohrungen entweder in reinen Erdgasfeldern gewonnen oder als Nebenprodukt bei der Erdölförderung. Da das Erdgas in der Regel unter hohem Druck (manchmal circa 600 bar) steht, fördert es sich sozusagen von selbst, sobald das Reservoir einmal geöffnet ist.

Im Laufe der Zeit nimmt der Gasdruck der Lagerstätte stetig ab. Die Exploration erfolgt heutzutage zunächst mit dreidimensionalen physikalischen Seismographen, dann durch geochemische Methoden und schließlich durch eine Erdbohrung.

Bohrtechnik an Land

Unkonventionelles Erdgas
Konventionelles Erdgas

Beim Bohren nach Erdgas wird häufig eine Tiefe von 4–6 Kilometer, bei Erkundungsbohrungen manchmal bis 10 Kilometer erreicht. Es gibt auch Bohrer, die nicht nur senkrecht, sondern auch schräg bis horizontal ins Gestein bohren können (insbesondere für Offshore-Bohrungen entwickelt). Beim Bohren muss das Gestein zerstört und nach oben befördert werden, ein Mantel muss den Bohrhohlraum schützen.

Im sogenannten Rotary-Bohrverfahren befindet sich der Bohrmeißel in einem ummantelten Bohrgestänge, das an einem Flaschenzug im Bohrturm (Höhe: 20 bis 40 Meter) befestigt ist.[22]

Beim Bohren können Instabilitäten im Gestein und ein Verlust an Bohrflüssigkeit auftreten, daher müssen Rohrstränge (auch Casing genannt) zur Stabilität des Bohrprozesses eingebracht werden. In der nachfolgenden Stufe wird dann mit einem geringeren Durchmesser gebohrt.[15]

Der Bohrloch-Durchmesser nimmt mit zunehmender Tiefe ab (von etwa 70 cm auf 10 cm). In der Mantelschicht strömt eine wässrige Tonlösung zur Kühlung des Bohrmeißels, zur Stabilisierung des Bohrlochs und zur Förderung des Bohrkleins. Zwischen dem Förderstrang und der Bohrlochauskleidung ist im Bohrloch knapp über der Erdgas führenden Schicht eine Dichtungsmanschette – Packer genannt – angebracht. Im Kopf des Mantels ist das Hauptventil – zum Öffnen und Schließen des Gasstromes – angebracht. Darüber befinden sich Messapparaturen, Ventile, Rohrverbindungen zur Weiterleitung.

Die Erdgassonde wird an der Erdoberfläche durch das Eruptionskreuz abgeschlossen, das aus zwei Hauptschiebern besteht, von denen einer als automatischer Sicherheitsabsperrschieber ausgerüstet ist, der bei kritischen Betriebsbedingungen die Sonde automatisch sperrt. Vom Bohrloch weg erfolgt die Ableitung des Gases über weitere Schieber und den Düsenstock – in der Regel mit einem Betriebsdruck von etwa 70 bar – zur Sammelstelle.

Die Bohrkosten machen bis zu 80 % der Aufwendungen bei den Erschließungskosten einer neuen Erdgaslagerstätte aus.

Meeresbohrtechnik

Die ersten Offshore-Bohrungen wurden 1947 von den USA vorgenommen. Später wurden fixe Bohrplattformen mit ausfahrbaren Beinen konstruiert. Es konnten Wassertiefen von mehreren hundert Metern erreicht werden.

Schließlich wurden auch schwimmende Bohrplattformen („Offshore-Drilling Units“) und Bohrschiffe entwickelt. Dabei wird der Bohrlochkopf auf den Meeresgrund verlagert. Es ist gelungen, mit derartigen Bohranlagen bis in 3.000 Meter Wassertiefe vorzustoßen.[22]

Verarbeitung

Trocknung

Erdgastrocknung

Die Trocknung von Erdgas, d. h. der Entzug von Wasser oder höheren Kohlenwasserstoffen, ist ein wesentlicher Vorgang bei der Erdgasaufbereitung.

Bei ungenügender Trocknung kann es zur Bildung von Methanhydraten kommen. Die festen Methanhydrate können zu einem extremen Druckabfall in der Pipeline beitragen und die Ventile und Rohrleitungen beschädigen. Die Trocknung garantiert auch einen gleich bleibenden Brennwert des Gases bei der Einspeisung in das öffentliche Gasnetz.

Gemessen wird der Trocknungsgrad von Erdgas mit dem Taupunkt. In der Regel wird ein Druck-Taupunkt unter −8 °C angestrebt.

Zur Gastrocknung sind unter anderem folgende Verfahren bekannt:

Absorptionstrocknung mit Triethylenglycol

Bei der Absorptionstrocknung wird Erdgas in einer Absorptions-Kolonne mit Triethylenglycol (TEG) in Kontakt gebracht. TEG ist stark hygroskopisch und entzieht dadurch dem Gas das Wasser.

Der Kontakt beider Medien erfolgt im Gegenstrom. Das Gas strömt in der Kolonne von unten nach oben. Entgegen hierzu wird das Triethylenglycol in der Kolonne oben eingebracht und unten wieder ausgeschleust. Voraussetzung für eine gute Wasseraufnahme ist eine große Kontaktfläche zwischen TEG und Gas, weshalb in der Kolonne eine strukturierte Packung eingebaut ist. In der Packung verteilt sich das TEG weiträumig.

Das aus der Kolonne ausgeschleuste Triethylenglycol wird in einer Regenerationsanlage wieder aufbereitet. In einem Verdampfer werden durch Erhitzen das aufgenommene Wasser sowie in geringeren Mengen auch Kohlenwasserstoffe aus dem Triethylenglycol entfernt.

Der Verdampfer wird über heiße Verbrennungsgase beheizt, welche in einer separat aufgestellten Brennkammer erzeugt werden. In der Brennkammer werden auch die bei der Regeneration entstehenden Brüdengase verbrannt. Dadurch wird der Bedarf an zusätzlich eingespeisten Brennstoff reduziert. Außerdem müssen die Brüdengase nicht aufwändig kondensiert und entsorgt werden.

Trocknung mittels Molekularsieb

Der Trocknungsprozess von Gasen mittels Molekularsieb erfolgt in der Regel in verschiedenen Stufen:

In einer ersten Stufe erfolgt die Vortrocknung durch Wärmeübertrager oder andere Arten von Wasserabscheidern. Hierbei wird das Gas gekühlt und durch Abscheider große Mengen an Wasser entzogen. Der Restwassergehalt im Gas ist nach diesem Prozess allerdings noch zu hoch, um es genügend komprimieren und damit verflüssigen zu können.

Nach der Vortrocknung gelangt das Gas in sogenannte Adsorber. Dies sind mindestens zwei Tanks, welche mit einem Molekularsieb gefüllt sind. Das Gas wird zunächst durch Adsorber Nr. 1 geleitet. Der Wasserdampf wird vom Molekularsieb aufgenommen (adsorbiert). Dieser Adsorptionszyklus kann bis zu 12 Stunden oder mehr dauern. Anschließend wird der Gasstrom durch Adsorber Nr. 2 geleitet und der Adsorber Nr. 1 „geht“ in die Regenerationsphase. Bei der Regenerierung wird heiße Luft, Stickstoff oder das Erdgas mit einer Temperatur ab ca. 280 °C durch den Adsorber gepresst. Hierdurch werden die vom Molekularsieb zurückgehaltenen Wasserdampfmoleküle wieder abgegeben und aus dem Tank heraus befördert. Danach erfolgt die Kühlung des Molekularsiebes über mehrere Minuten bis Stunden. Eine Adsorptions- und Regenerationsphase nennt man Zyklus.

Am Gasaustritt kann ein Taupunkt von bis zu −110 °C erreicht werden.

Die bei der Erdgastrocknung eingesetzten Molekularsiebe werden speziell für die verschiedensten Gaszusammensetzungen entwickelt. Oft müssen nicht nur Wassermoleküle, sondern auch Schwefelwasserstoff oder Kohlenwasserstoffe aus dem Gas entfernt werden. In den meisten Fällen kommt ein 4A Molekularsieb (mit einer Porenöffnung von 4 Å Durchmesser) zum Einsatz. Es gibt auch Situationen, für welche eine Kombination aus verschiedenen Typen zur Anwendung gelangt.

Abtrennung von Kohlenstoffdioxid und Schwefelwasserstoff

Die Abtrennung von Kohlenstoffdioxid und Schwefelwasserstoff erfolgt auf chemischem oder physikalischem Weg. Die beiden Gase können zusammen mit einer Base wie N-Methyl-Pyrrolidon (Purisol-Verfahren) in einem hochsiedenden Lösungsmittel gebunden werden.

Bei der physikalischen Abtrennung, beispielsweise dem Sulfinol-Prozess, wird eine hochsiedende polare organische Flüssigkeit, die etwas Wasser enthält, eingesetzt. Beim Sulfinol-Prozess verwendet man als Lösungsmittel eine Mischung aus Diisopropanolamin (DIPA), Tetrahydrothiophendioxid (Sulfolan) und Wasser.

Der Schwefelwasserstoff aus dem Erdgas wird unter hoher Hitze mit Sauerstoff zu Schwefel umgesetzt (Claus-Verfahren).

Abtrennung von Stickstoff

Stickstoff und Helium können durch Tieftemperaturtrennung vom Erdgas abgeschieden werden. In einer Hochdrucktrennapparatur steigt ein mit Stickstoff angereicherter Gasstrom nach oben, Methangas strömt zum Sumpf der Kolonne. Dieser Verfahrensschritt kann mit der Flüssiggasherstellung (LNG) gekoppelt werden.

Radioaktiver Abfall

Im Dezember 2009 wurde der Öffentlichkeit bekannt, dass bei der Erdöl- und Erdgasförderung jährlich Millionen Tonnen radioaktiver Rückstände anfallen, für dessen Entsorgung größtenteils der Nachweis fehlt.[29] Im Rahmen der Förderung an die Erdoberfläche gepumpte Schlämme und Abwässer enthalten NORM-Stoffe (Naturally occurring radioactive material), auch das hochgiftige und extrem langlebige Radium 226 sowie Polonium 210. Die spezifische Aktivität der Abfälle beträgt zwischen 0,1 und 15.000 Becquerel (Bq) pro Gramm. In Deutschland, wo etwa 1.000 bis 2.000 Tonnen Trockenmasse im Jahr anfallen, ist das Material laut der Strahlenschutzverordnung von 2001 bereits ab einem Bq pro Gramm überwachungsbedürftig und müsste gesondert entsorgt werden. Die Umsetzung dieser Verordnung wurde der Eigenverantwortung der Industrie überlassen, wodurch die Abfälle letztlich über Jahrzehnte hinweg sorglos und unsachgemäß beseitigt wurden. Es sind Fälle dokumentiert, in welchen Abfälle mit durchschnittlich 40 Bq/g ohne jede Kennzeichnung auf einem Betriebsgelände gelagert wurden und auch nicht für den Transport besonders gekennzeichnet werden sollten.[30]

In Ländern mit größeren geförderten Mengen von Öl oder Gas entstehen deutlich mehr Abfälle als in Deutschland, jedoch existiert in keinem Land eine unabhängige, kontinuierliche und lückenlose Erfassung und Überwachung der kontaminierten Rückstände aus der Öl- und Gasproduktion. Die Industrie geht mit dem Material unterschiedlich um: In Kasachstan sind weite Landstriche durch diese Abfälle verseucht, in Großbritannien werden die radioaktiven Rückstände in die Nordsee geleitet.[29][30] In den Vereinigten Staaten gibt es in fast allen Bundesstaaten aufgrund der radioaktiven Altlasten aus der Erdölförderung zunehmend Probleme. In Martha, einer Gemeinde in Kentucky, hat das Unternehmen Ashland Inc. tausende kontaminierte Förderrohre an Farmer, Kindergärten und Schulen verkauft, ohne diese über die Kontamination zu informieren. Es wurden bis zu 1.100 Mikroröntgen pro Stunde gemessen, so dass die Grundschule und einige Wohnhäuser nach Entdeckung der Strahlung sofort geräumt werden mussten.[31]

Transport

Speicherdichte von Erdgas bei verschiedenen Drücken und Temperaturen
Markierungsbake einer Hochdruckleitung, die den Verlauf der Unterflur-Pipeline im Gelände anzeigt
Eine Gasdruckregelanlage der EVN entnimmt das Erdgas aus dem Erdgashochdrucknetz und reduziert es auf Mitteldruck.

Erdgas wird überwiegend über Rohrleitungen, sogenannte Pipelines, auch über große Distanzen (daher auch der Begriff Ferngas) transportiert. Bedeutende Pipelines für die Anbindung von Westeuropa, dessen Erdgas zum größten Teil aus Russland bezogen wird, sind unter anderen Nord Stream (North European Gas Pipeline), die Sojus-Pipeline und Erdgasleitung Jamal–Europa.

Erdgas kann durch physikalisch-technische Verfahren komprimiert (CNG, Compressed Natural Gas) oder in den flüssigen Aggregatzustand (LNG, Liquified Natural Gas) überführt werden. Gemein ist diesen Verfahren (siehe Treibstoff für Kraftfahrzeuge) eine Verringerung des Volumens bzw. eine Erhöhung der Dichte, wodurch größere Mengen an Erdgas auf kleinerem Raum gelagert und transportiert werden können bzw. die Transportrate in Pipelines deutlich höher ist.

Rohrleitungen

Der Druck in Gasleitungsrohren gestaltet sich je nach Transport und Verteilung unterschiedlich.

Die aus Stahl bestehenden Ferntransport-Rohrleitungen auf dem Festland haben einen Durchmesser von etwa 1,4 Metern, stehen unter einem Druck von etwa 84 bar, und sind in der Regel etwa einen Meter unter der Erde verlegt. Alle 100 bis 150 Kilometer muss eine Kompressorstation für neuen Druck sorgen. Ein weiter Transport von Erdgas kann – je nach Auslegung, Höhenverlauf und Durchflussrate einer Leitung – zu einem erheblichen Energieverbrauch durch Pumpen führen. Bei 4.700 Kilometern müssen etwa 10 % der Energie des Erdgases für den Pumpenbetrieb verwendet werden.[15] Zur Begrenzung von Gefahren durch Lecks, die einen ungehinderten Gasaustritt ermöglichen könnten, werden außerdem in gewissen Abständen Schieber in einer Pipeline angebracht. In einer Steuerzentrale kann der Rohrdruck des Gasnetzes fernüberwacht werden. Dieses Netz wird von den Fernleitungsnetzbetreibern betrieben.

Für die regionale Verteilung von Erdgas gibt es ein spezielles, dichteres Netzsystem von regionalen Betreibern, mit einem Rohrleitungsdruck von etwa 16 bar. Für den Transport von Erdgas an die regionalen Kommunen gibt es ein drittes Netz, das nur noch einen Erdgasdruck unter 1 bar hat, und für private Haushalte einen Überdruck von nur noch 20 mbar aufweist. Bis zu einem Druck von 10 bar sind heute für Gasleitungen Rohre aus Kunststoff (Polyethylen) üblich.[15]

In Deutschland hatte das Hochdruck-Erdgasnetz im Jahr 2002 eine Länge von etwa 50.000 Kilometer, das Netz mit Niederdruckleitungen zu den Hausanschlüssen hatte eine Länge von 370.000 Kilometer.

Für die Errichtung und den Betrieb von Erdgasnetzen müssen, je nach Baugrund (Fels, Sand) und Geografie (Querung von Flüssen mit Dükern, Bahnleitungen, Autobahnen etc.) hohe Beträge aufgebracht werden. Der Beschaffungs- oder Zeitwert eines Erdgasnetzes ist insofern schwer abzuschätzen und hängt auch vom Geschäftsmodell ab (zukünftiger Ertragswert).

Die fünf Erdgastransitleitungen in Österreich wiesen 2006 durchwegs Nenndruck 70 bar und folgende Nenndurchmesser auf: Trans Austria Gasleitung mit drei Parallel-Strängen (etwa 380 Kilometer lang) mit 900 bis 1.050 Millimetern, West-Austria-Gasleitung (245 Kilometer) 800 Millimeter, (kürzer als 100 Kilometer) Hungarian-Austria-Gasleitung und Penta-West 700 Millimeter und Süd-Ost-Gasleitung 500 Millimeter.[32] TAG erhielt (um 2006 bei Wildon) eine zweite Röhre, TAG aus 1970 stammend erhielt 2009+2011 neue Verdichter in Neustift und Baumgarten.

LNG-Transportschiffe

Für den Schifftransport wird das Erdgas durch Abkühlen auf −160 °C verflüssigt (engl. Liquefied Natural Gas, LNG). Die derzeit (2014) größten LNG-Tanker der Q-Max-Klasse können über 266.000 m³ LNG transportieren. Für LNG-Tanker gibt es zwei Bauarten: Die Kugel- und die Membran-Tanker. Insgesamt 130 LNG-Tanker wurden bis zum Jahr 2000 konstruiert.[22]

Ab 4.000 Kilometer Landweg oder 2.000 Kilometer Seeweg ist diese Transportart ökonomisch günstiger als der Transport über ein Rohrleitungssystem.[15]

Umwandlung in synthetische Flüssigbrennstoffe

Weil Mineralöle wie Benzin und Diesel keine Druckbehälter für Lagerung und Transport benötigen, ist die chemisch-technische Umwandlung in langkettige, bei Raumtemperatur flüssige Kohlenwasserstoffe (sogenannte GtL-Verfahren) eine Möglichkeit, Erdgas in eine relativ leicht handhabbare und platzsparende Form zu überführen. Solche synthetischen Mineralöle sind frei von Schwefel und Schwermetallen und somit zudem umweltverträglicher als Mineralöle aus natürlichem Rohöl. Die Unternehmen Sasol (Südafrika) und Shell (Malaysia) stellten bereits im Jahr 1997 aus Erdgas ein synthetisches Mineralöl her, das als Dieselzusatz Verwendung fand. Grundlage war die Umwandlung von Methan mit Sauerstoff zu Synthesegas (2 CH4 + O2 → 2 CO + 4 H2). Synthesegas lässt sich unter hohem Druck und hohen Temperaturen mittels des Fischer-Tropsch-Verfahren in synthetische Mineralöle umwandeln.

Da der Prozess hohe Temperaturen, Drücke und reinen Sauerstoff erforderte, versuchte man schon bald, die Reaktionsbedingungen für die Umwandlung zu verbessern. Die Firma Syntroleum Company (in Tulsa, USA) entwickelte ein Verfahren, das mit Luft anstatt reinem Sauerstoff gute Rohölausbeuten brachte. Entscheidend in Bezug auf die Kosten sind möglichst niedrige Umwandlungstemperaturen. Es wurde eine Vielzahl von Katalysatoren für eine derartige Umwandlung erprobt. Die Unternehmen möchten gerne auch die Umwandlung von Erdgas in einem einzigen Reaktionsschritt erreichen.

An der Pennsylvania State University ist es mittels eines Katalysators gelungen, Methan bei weniger als 100 °C in Methanol umzuwandeln.[33]

Speicherung

Zum Ausgleich von Lastschwankungen bei der Erdgasversorgung wurden Untergrund-Erdgasspeicher errichtet. Ein BDEW-Sprecher teilte mit, dass es in Deutschland 46 Untertage-Gasspeicher gebe. Ihre Aufnahmekapazität betrage knapp 20 Milliarden Kubikmeter Arbeitsgas. Das entspreche fast einem Viertel des 2007 in Deutschland verbrauchten Erdgases.[34] In Österreich liegt die Kapazität bei 5 Milliarden Kubikmeter und ist damit prozentual noch höher.

Mitunter dienen untertägige Salzkavernen als Speicherort für Erdgas. Zur Erstellung des Speicherhohlraums pumpt man Wasser durch eine Bohrung in eine geologische Salzformation. Hierbei löst sich das Salz in einem gesteuerten Prozess und die entstandene Salzsole wird durch die gleiche Bohrung abgeleitet. Als sogenannte Porenspeicher können aber auch entleerte Erdöl- und Erdgaslagerstätten dienen. Kurzfristige Kapazität haben sogenannte Röhrenspeicher mit 50 bis 100 bar, die mäanderförmig einige Meter tief im Boden verlegt werden, beispielsweise Teil einer stillgelegten Erdgasleitung sein können.

Die wesentlich kleineren Übertage-Gasspeicher werden vorwiegend für tägliche Bedarfsschwankungen verwendet. Statt der früheren turmhohen Gasometer (meist Teleskop- und Scheibengasbehälter) werden nun Hochdruck-Kugelgasbehälter eingesetzt, die mit etwa 10 bar Überdruck betrieben werden.

Versorgung

Weltförderungen

Die Netto-Weltförderung von Erdgas (Naturgas) einschließlich Erdölgas, abzüglich zurückgepresstes und abgefackeltes Gas und abzüglich Eigenverbrauch betrug im Jahr 2010 rund 3.239,5 Milliarden Kubikmeter, davon waren Russland und die USA mit jeweils 19 % Weltanteil die Hauptförderländer. Russland förderte 2010 ebenso wie die USA 611 Milliarden Kubikmeter Erdgas. Weitere bedeutende Förderstaaten sind Kanada mit 4,9 % (160 Milliarden Kubikmeter), Iran mit 4,3 % (139 Milliarden Kubikmeter), Katar mit 3,6 % (117 Milliarden Kubikmeter), Norwegen, China, Saudi-Arabien, Algerien, Niederlande und Indonesien. Deutschland förderte 14,2 Milliarden Kubikmeter (0,4 %).[28]

Damit deckte 2010 Erdgas etwa 24 % des weltweiten Energieverbrauchs. Bedeutende Verbraucher von Erdgas sind die USA, Russland, Iran, China, Deutschland und Japan.[28]

Situation in Deutschland

Versorgung

Bis Anfang der 1980er Jahre wurde die Gasversorgung der meisten westdeutschen Städte von Stadtgas, das wegen des hohen Anteils von Kohlenstoffmonoxid giftig ist, auf Erdgas umgestellt. Dies war ohne größere Umbauten möglich. Auf dem Gebiet der ehemaligen DDR vollzog man die Umstellung überwiegend erst in den 1990er Jahren.

Jahr Deutscher Erdgasverbrauch in Milliarden m³ i.N.[35]
2004 094,34
2005 099,55
2006 093,88
2007 102,00
2008 097,44
2009 096,26
2010 099,50
2011 074,50
2012 078,40
2013 072,50
2014 070,90

Schon seit über 25 Jahren gibt es Überlegungen, bei Wilhelmshaven ein LNG-Terminal für Flüssiggastanker zu bauen, um die Abhängigkeit von Importen über Pipelines zu reduzieren.

Zur Spitzendeckung sowie zum Ausgleich kurzfristiger Importstörungen und Bedarfschwankungen werden etwa 18,6 Milliarden Kubikmeter Erdgas in Untergrundspeichern gelagert.

Die Verwendung von Erdgas unterliegt einer Erdgassteuer, deren Normalsatz zurzeit bei 5,50 € je Megawattstunde (das sind 0,55 Cent pro kWh) liegt.

Bei der Preisbildung für Erdgas spielt die Ölpreisbindung eine große Rolle. Das Kartell der Gaspreisbildung aufgrund der brancheninternen Vereinbarung einer Ölpreisbindung verstößt jedoch nach einer weit verbreiteten Auffassung gegen europäisches und deutsches Kartellrecht. Der Bundesgerichtshof (BGH) entschied am 24. März 2010, dass Gasversorger ihre Preise nicht mehr ausschließlich an die Entwicklung des Ölpreises binden dürfen.[36]

Vom Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA) werden die Einfuhr- und Ausfuhrpreise von Erdgas monatlich registriert, ferner werden die Abnahmemengen für einzelne Lieferländer verzeichnet. Zwischen 1991 und 1999 lag der Importpreis für Erdgas je Terajoule durchschnittlich etwa zwischen 1.700 und 2.200 €. Zwischen 2001 und 2004 lag der Erdgasimportpreis je Terajoule zwischen 3.200 und 4.200 €. Im Jahr 2006 stieg der Erdgasimportpreis je Terajoule zeitweise auf über 6.000 € an. Im November 2008 lag der Importpreis für Erdgas bei 8.748 € je Terajoule, im September 2009 bei 4.671 €. Preissprünge beim Erdgas sind für die Verbraucher intransparent.

Deutsche Erdgasunternehmen

Der weltweit größte Erdgasproduzent mit Sitz in Deutschland ist die BASF-Tochter Wintershall.[37] Die größten Erdgas-Versorgungsunternehmen in Deutschland sind E.ON Ruhrgas (Essen), RWE Energy (Dortmund), VNG – Verbundnetz Gas (Leipzig), Wingas (Kassel), Shell (Hamburg) und ExxonMobil (Hannover). Der Transport (Pipelines) wird von sog. Fernleitungsnetzbetreibern sichergestellt, darunter Open Grid Europe (Essen), Ontras (Leipzig), Gascade (Kassel) und Terranets BW (Stuttgart).

Der Vertrieb an die Endverbraucher erfolgt über circa 700 Gasversorgungsunternehmen, insbesondere Stadtwerke. Den größten Teil des bezogenen Erdgas erwirbt E.ON Ruhrgas von dem russischen Unternehmen Gazprom sowie von der niederländischen Gasunie und den norwegischen Produzenten.

Messung

Die Messung beim Endkunden erfolgt volumetrisch, also durch Volumenmessung. Um eine genaue Messung zu gewährleisten, liegt häufig unmittelbar vor dem Gas„zähler“ ein Druckregler, der den Überdruck gegenüber dem Außendruck in einer letzten Stufe reguliert, denn in Leitungsnetzen, die oft mit abwärts abgestuften Druckniveaus betrieben werden, dienen Leitungsvolumina eventuell als Zwischenspeicher und verursachen schwankende Verbrauchsraten unterschiedlichen Druckabfall in einem Leitungsstück. Um aus dem Volumen auf die Gasmenge (Masse) zu schließen benötigt man die Dichte, also den absoluten Druck und die Temperatur des Gases. Die Temperaturschwankung wird durch Aufstellung innerhalb eines Gebäudes möglichst gering gehalten. Druckregler am Gas„zähler“ müssen geeicht werden, wie die Volumenmesseinrichtung selbst. Der äußere Luftdruck als Referenz wird unter Umständen nach der Meereshöhe des individuellen Zählers oder pauschal des Ortes oder Bezirks berücksichtigt (100 m Höhenunterschied machen etwas weniger als 1 % Gas-Druckunterschied aus, meteorologische Schwankungen werden nicht berücksichtigt). Daraufhin wird der Energiegehalt pro kg Gas ermittelt, durch Mischen eingestellt und zu Verrechnungszwecken berücksichtigt.

Gasabsperrung

Im internationalen Gashandel sind Gasabsperrung oder Reduktion von Liefermengen (Raten) Gegenstand politischer Verhandlungen.

Marktraumumstellung

L-Gas aus deutscher und niederländischer Produktion bedient gegenwärtig ca. 30 % des deutschen Erdgasmarktes. Jedoch sind die Fördermengen rückläufig, so dass in den folgenden Jahren bis voraussichtlich 2030 sämtliche betroffenen Netzgebiete auf H-Gas umgestellt werden müssen, welches langfristig verfügbar ist. Diese Maßnahme dient der Versorgungssicherheit in den Bundesländern Bremen, Niedersachsen, Nordrhein-Westfalen, Sachsen-Anhalt, Hessen und Rheinland-Pfalz.

Im Zuge dieser sogenannten Marktraumumstellung müssen bei allen Verbrauchern die mit Erdgas betriebenen Geräte an die Nutzung von H-Gas angepasst werden. Dies gilt gleichermaßen für private Haushalte wie für Unternehmen. Im Vorfeld der eigentlichen Anpassungen findet eine Vollerhebung aller Gasgeräte – wie beispielsweise Gasherde und Heizkessel – im jeweiligen Netzgebiet statt, um eine Übersicht über die insgesamt vorhandenen Gasgeräte zu erlangen.

Die bei der Anpassung der Gasgeräte anfallenden Kosten werden über die Regulierung der Netzentgelte gem. §§ 21 ff. EnWG auf alle Endverbraucher umgelegt (Wälzung der Kosten).[38] Die Netzentgeltregulierung berücksichtigt insbesondere den Umstand, dass der Betrieb eines Gasversorgungsnetzes ein natürliches Monopol darstellt, welches ohne eine gesetzliche Regulierung die Preise für die Netznutzung frei bestimmen und insofern übermäßig hoch ansetzen könnte.

Situation in Österreich

Bereits ab 1943 wurde in Österreich Erdgas dem Stadtgas beigemischt. In den Städten (z.B. Baden, Stockerau, Wien, Wiener Neustadt) erfolgte ab Ende der 60er bis hinein in die 80er Jahre die Umstellung von Stadtgas auf Erdgas.

Jahr Österreichischer Erdgasimport TJ[39]
2000 0248.064
2005 0373.822
2010 0474.049
2011 0510.953
2012 0541.128
2013 0396.671
2014 0386.748
2015 0438.718

Endkonsumenten, insbesondere privaten Haushalten wird bei Zahlungsverzug nach zumindest zweimaliger Mahnung – um rasches Wiedereinschalten zu ermöglichen, jedoch nicht vor Feiertagen – die Gaslieferung vom Gasversorger abgesperrt. 2013 wurden 8.457 Privathaushalten in Österreich, 6.081 davon in Wien, das Gas „abgedreht“ meldet die Regulierungsbehörde E-Control erstmals im Mai 2014 aufgrund der Gasmonitoringverordnung. Zahlen von Stromsperrungen aus demselben Grund würden von den Versorgern meist „schubladisiert“.[40]

Ökologische Aspekte

Durch die geringen Verunreinigungen verbrennt Erdgas generell gegenüber anderen fossilen Brennstoffen sauberer. Trotzdem tragen Förderung, Transport, Verarbeitung und Verbrennung von Erdgas zur Freisetzung der Treibhausgase Methan und Kohlenstoffdioxid bei. Durch den höheren Heizwert wird beim Verbrennen von Erdgas um bis zu 25 % weniger Kohlenstoffdioxid erzeugt als bei Heizöl.

Ökologisch wie ökonomisch unsinnig ist, wenn Erdgas als Nebenprodukt der Erdölförderung nicht gewinnbringend abgesetzt oder zurück in die Erde gepumpt werden kann, sondern abgefackelt werden muss. Durch verschiedene flare-down-Programme der Erdölindustrie soll das Abfackeln vermindert und das Erdgas der Verarbeitung und einer kontrollierten, saubereren energetischen Nutzung zugeführt werden und dabei andere Energieträger ersetzen. Dies bewirkt eine erhebliche Verbesserung der globalen Ökobilanz und wird daher durch Steuervorteile gefördert. Falls einmal Erdgas nicht mehr ausreichend zur Verfügung steht, kann durch zunehmende Produktion und Beimischung von Biogas die Nachhaltigkeit der Investitionen in regionale Erdgasnetze gewährleistet werden.

Durch undichte Stellen in Förderanlagen und Rohrleitungen entwichene Bestandteile des Erdgases gehen entweder direkt in die Erdatmosphäre bzw. lösen sich einige Bestandteile, sofern das Gas aus unterseeischen Leitungen entweicht, im Meerwasser. Bei ausreichender Tiefe und entsprechend hohem Druck sowie ausreichend tiefer Temperatur kann sich der Methan-Anteil des Erdgases als festes Methanhydrat am Meeresboden ablagern.

Die Förderung unkonventionellen Erdgases mittels Hydraulic Fracturing ist mit einigen zusätzlichen Umweltrisiken verbunden, insbesondere hinsichtlich der den Frackfluiden zugesetzten Chemikalien und dem Entweichen von im Erdgas enthaltenen gesundheitsschädlichen Stoffen aus in offenen Tanks gelagertem Flowback und Lagerstättenwasser. Problematischer ist jedoch die starke Zunahme der Erdgasförderung in der Fläche infolge des Fracking-Booms, wie sie ab dem Jahr 2000 vor allem in den USA zu beobachten ist. Diese führt zu einer Verstärkung der allgemein mit der Erdgasförderung verbundenen Umweltbelastungen.

Sicherheitsaspekte

Erdgas birgt durch seine Explosivität gewisse Unfallrisiken, was bei unsachgemäßem Gebrauch z. B. in Haushalten von Unfällen bis hin zu katastrophalen Ereignissen (Bsp. Gasexplosion von Chuandongbei, Gasexplosion von Belgien) führen kann.

Am 25. März 2012 wurde entdeckt, dass aus einem unbekannten Leck an der Gas-( und Öl-)Förderplattform Elgin PUQ des Konzerns Total in der Nordsee unter Wasser Gas ausströmt. Zunächst strömten nach Angaben des Betreibers täglich 200.000 Kubikmeter Gas aus dem Leck 25 Meter über dem Wasserspiegel ins Freie, später habe sich die Menge auf etwa ein Drittel verringert. Brand- und Explosionsgefahr durch an die Luft gelangtes Gas und wegen der Giftigkeit von im Gas enthaltenem Schwefelwasserstoff wurden für Schiffe und Flugzeuge Sicherheitszonen von bis zu 5,6 km Radius eingerichtet und benachbarte Plattformen evakuiert.[41] 50 Tage später, Mitte April 2012, teilte der Konzern mit, dass das Leck wieder geschlossen sei. [42]

Siehe auch

Literatur

  • Bundesverband der deutschen Gas- und Wasserwirtschaft, BGW: Die Erdgasversorgung der Zukunft, Informationen und Hintergründe zum deutschen Erdgasmarkt; 2006 PDF-Datei
  • Günther Cerbe: Grundlagen der Gastechnik – Gasbeschaffung, Gasverteilung, Gasverwendung. Hanser Verlag, München/ Wien 2004, 6. Aufl., ISBN 3-446-22803-9.
  • Stefan Ueberhorst: Energieträger Erdgas- Exploration, Produktion, Versorgung. Bibliothek der Technik, Band 102, Verlag Moderne Industrien, Landsberg 1994, 2. Aufl., ISBN 3-478-93105-3.
  • Kulke, Holger (1994) Der Energieträger Erdgas. Geowissenschaften; 12, 2; 41–47; doi:10.2312/geowissenschaften.1994.12.41.
Wiktionary: Erdgas – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Stadtwerke Aachen: Erdgas, getrocknet – Sicherheitsdatenblatt gemäß EG-Verordnung 1907/2006 (REACH) und § 6 GefStoffV; Pkt 3. Zusammensetzung; Stand 4. Oktober 2011 PDF-Datei
  2. Stadtwerke München: Erdgas, getrocknet – Sicherheitsdatenblatt gemäß EG-Verordnung 1907/2006 (REACH) und § 6 GefStoffV; Pkt 3. Zusammensetzung; Ausgabe Januar 2011 PDF-Datei
  3. Welche Vorteile hat Erdgas? Stand: 23. Mai 2010
  4. Medienübergreifende Umweltkontrolle in ausgewählten Gebieten, Wien: Umweltbundesamt, 2004.
  5. Erdgaseinsatz für Busse, Pressetext der EVN AG, Stand: 22. Mai 2010
  6. a b S. Ueberhorst: Energieträger Erdgas. 1994, S. 50.
  7. Erdgasbestandteile
  8. Ullmanns Encyklopädie der technischen Chemie, 5. Auflage, Vol. A17, S. 74 ff.
  9. Technische Regeln – Arbeitsblatt G 260: Gasbeschaffenheit. DVGW Deutsche Vereinigung des Gas- und Wasserfaches e.V., Bonn 2000 (PDF-Datei; 1,0 MB), S. 8 f.
  10. Ströbele, Pfaffenberger und Heuterkes (2013): Energiewirtschaft. Einführung in Energie und Politik, 3. Auflage, S. 149.
  11. Autorenkollektiv: Gasinstallation: Tipps für die Praxis. Herausgegeben von der Arbeitsgemeinschaft für sparsamen und umweltfreundlichen Energieverbrauch e.V. (ASUE) und der Deutschen Vereinigung des Gas- und Wasserfaches e.V. (DVWG), Berlin 2010 (PDF-Datei; 2,2 MB), S. 14 f
  12. Natural Gas is King in Pittsburgh, American Oil and Natural Gas Historical Society, abgerufen am 27. Juli 2014
  13. a b Enzyklopädie Naturwissenschaften und Technik, Zweiburgenverlag Weinheim 1981, Band E-J, Stichwort: Erdgas, S. 1232 ff.
  14. Craig Morris: Zukunftsenergien, Die Wende zum nachhaltigen Energiesystem, Heise Zeitschriftenverlag 2006, S. 91 ff ISBN 3-936931-26-7
  15. a b c d e Landolt Börnstein: New Series VIII, 3A, Natural Gas Exploitaition Technologies, Springer, 2002, S. 40 ff. doi:10.1007/10696439_5
  16. Hans-Joachim Ziesing: Energieverbrauch in Deutschland im Jahr 2015. Arbeitsgemeinschaft Energiebilanzen e. V., Berlin 2016 (PDF-Datei; 441 kB), S. 17
  17. Bundesregierung beschließt Änderung des Energiesteuer- und des Stromsteuergesetzes. Zugriff am 5. Juni 2017
  18. LPG- und CNG-Tankstellenverzeichnis für Deutschland. Zugriff am 8. März 2016
  19. KfW: Mit Gas in die Zukunft, 30. November 2015
  20. a b Michael McDonald: European Natural Gas Prices Collapse. In: OilPrice.com. 17. Mai 2016, abgerufen am 25. Oktober 2016.
  21. First US shale gas arrives at Ineos plant in Scotland. In: BBC News. 28. September 2016 (bbc.com).
  22. a b c d e f g Winnacker, Küchler: Chemische Technik, Band 4, Energieträger, 5. Auflage, S. 13 ff., ISBN 3-527-30769-9
  23. Erdgas aus Deutschland: Schatzsuche im Schiefer. Spiegel Online, 12. April 2010, abgerufen am 12. April 2010.
  24. Jan Willmroth: Energie: Egal was passiert, Fracking wird bleiben. In: Süddeutsche Zeitung. 11. Februar 2016 (sueddeutsche.de).
  25. Karen E. Higgs, Horst Zwingmann, Agnes G. Reyes, Rob H. Funnell: Diagenesis, Porosity Evolution, and Petroleum Emplacement in Tight Gas Reservoirs, Taranaki Basin, New Zealand. Journal of Sedimentary Research. Bd. 77, Nr. 12, 2007, S. 1003–1025, doi:10.2110/jsr.2007.095
  26. The best definition of tight gas reservoir is “a reservoir that cannot be produced at economic flow rates nor recover economic volumes of natural gas unless the well is stimulated by a large hydraulic fracture treatment, by a horizontal wellbore, or by use of multilateral wellbores.” Stephen A. Holditch: Tight Gas Sands. Journal of Petroleum Technology. Juni 2006, S. 84–90
  27. Gas aus Ölschieferfeldern krempelt Erdgasmärkte um. In: VDI-Nachrichten. VDI Verlag GmbH, 12. März 2010, abgerufen am 2. August 2010.
  28. a b c d Kurzstudie – Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen 2011. (PDF-Datei; 9,0 MB) Bundesanstalt für Geowissenschaften und Rohstoffe, , abgerufen am 22. Oktober 2012.
  29. a b Strahlender Abfall von Öl und Gas. In: tagesschau.de. 7. Dezember 2009, archiviert vom Original am 8. Dezember 2009; abgerufen am 6. Februar 2010.
  30. a b Unbekannte Gefahr – Radioaktive Abfälle aus der Öl- und Gasindustrie. In: Deutschlandfunk. 5. Februar 2010, abgerufen am 6. Februar 2010.
  31. Radioaktive Rückstände – Probleme aus der Ölförderung belasten Anwohner in Kentucky. In: Deutschlandfunk. 9. März 2010, abgerufen am 13. März 2010.
  32. Christoph Edler: Das österreichische Gasnetz. Bachelor-Thesis, Technische Universität Wien, 2013 (PDF-Datei; 15 MB) S. 37 ff.
  33. Safaa A. Fouda: Erdgasverflüssigung – Rohöl aus dem Chemiebaukasten. Spektrum der Wissenschaften, 4/1999, S. 92
  34. Minister will Gasreserve für Deutschland, Ärzte Zeitung, 1. September 2008
  35. Natural gas – consumption (cubic meters). IndexMundi, , abgerufen am 22. Oktober 2012.
  36. BGH, Urteil vom 24. März 2010, Az. VIII ZR 178/08, Volltext und Pressemitteilung Nr. 61/2010 vom 24. März 2010.
  37. Wintershall verkauft norwegische Gasfelder. Handelsblatt, 15. August 2015
  38. Marktraumumstellung, DVGW, abgerufen am 7. Februar 2016
  39. Bundesanstalt Statistik Österreich
  40. 6.081 Wienern wurde das Gas abgedreht, ORF.at vom 26. Mai 2014.
  41. Gas strömt unkontrolliert aus, ORF.at vom 27. März 2012.
  42. "Elgin"-Gasleck ist gestopft Der Spiegel vom 16. April 2012