„Klima“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
→‎Klimawandel: Ergänzung plus Beleg
Zeile 125: Zeile 125:
{{Hauptartikel|Klimawandel|Paläoklimatologie}}
{{Hauptartikel|Klimawandel|Paläoklimatologie}}
[[Datei:Weichsel-Würm-Glaciation.png|mini|Fennoskandischer Eisschild und alpine Vergletscherung während der Weichsel- beziehungsweise [[Würm-Kaltzeit]]]]
[[Datei:Weichsel-Würm-Glaciation.png|mini|Fennoskandischer Eisschild und alpine Vergletscherung während der Weichsel- beziehungsweise [[Würm-Kaltzeit]]]]
Im Unterschied zu regional oder [[Erdoberfläche#Gliederung nach Hemisphären|hemisphärisch]] auftretenden Klimaschwankungen (auch ''Klimafluktuationen'' oder ''Klimaanomalien'', mit einer Dauer von einigen Jahrzehnten oder Jahrhunderten) erfolgt ein weltweiter ''Klimawandel'' durch die markante Veränderung des [[Strahlungsantrieb]]s, der das [[Erdsystemforschung|Erdsystem]] aus einem [[Strahlungshaushalt der Erde|thermisch-radiativen]] [[Gleichgewicht (Systemtheorie)|Gleichgewicht]] in ein neues Gleichgewicht überführt. Dieser Prozess bewirkt je nach geophysikalischer Konstellation eine deutliche Abkühlung oder eine starke Erwärmung über unterschiedlich lange Zeiträume. Die gegenwärtige, durch den Menschen verursachte ([[anthropogen]]e) [[globale Erwärmung]] ist ein Beispiel für einen rasch fortschreitenden, aber noch nicht abgeschlossenen Klimawandel.<ref name="10.1073/pnas.0812721106">{{cite journal | author=Susan Solomon | coauthors=Gian-Kasper Plattner, [[Reto Knutti]], Pierre Friedlingstein | year=2009 | month=Februar | title=Irreversible climate change due to carbon dioxide emissions | journal=PNAS | volume=106 | issue=6 | pages=1704–1709 | doi=10.1073/pnas.0812721106 | language=en}}</ref>
Im Unterschied zu regional oder [[Erdoberfläche#Gliederung nach Hemisphären|hemisphärisch]] auftretenden Klimaschwankungen (auch ''Klimafluktuationen'' oder ''Klimaanomalien'', mit einer Dauer von einigen Jahrzehnten oder Jahrhunderten) erfolgt ein weltweiter ''Klimawandel'' durch die markante Veränderung des [[Strahlungsantrieb]]s, der das [[Erdsystemforschung|Erdsystem]] aus einem [[Strahlungshaushalt der Erde|thermisch-radiativen]] [[Gleichgewicht (Systemtheorie)|Gleichgewicht]] in ein neues Gleichgewicht überführt. Dieser Prozess bewirkt je nach geophysikalischer Konstellation eine deutliche Abkühlung oder eine starke Erwärmung über unterschiedlich lange Zeiträume. Die gegenwärtige, durch den Menschen verursachte ([[anthropogen]]e) [[globale Erwärmung]] ist ein Beispiel für einen rasch fortschreitenden, aber noch nicht abgeschlossenen Klimawandel, <ref name="10.1073/pnas.0812721106">{{cite journal | author=Susan Solomon | coauthors=Gian-Kasper Plattner, [[Reto Knutti]], Pierre Friedlingstein | year=2009 | month=Februar | title=Irreversible climate change due to carbon dioxide emissions | journal=PNAS | volume=106 | issue=6 | pages=1704–1709 | doi=10.1073/pnas.0812721106 | language=en}}</ref> dessen bisheriger Verlauf in der Klimageschichte der letzten 66 Millionen Jahre ein singuläres Ereignis darstellt.<ref name="10.1038/ngeo2681">{{cite journal | author=Richard E. Zeebe | coauthors=Andy Ridgwell, [[James Zachos|James C. Zachos]] | year=2016 | month=April | title=Anthropogenic carbon release rate unprecedented during the past 66 million years | journal=Nature Geoscience | volume=9 | issue=4 | pages=325–329 | doi=10.1038/ngeo2681 | url=http://climatechange.lta.org/wp-content/uploads/cct/2015/03/ZeebeEtAl-NGS16.pdf | format=PDF | language=en}}</ref>


Die wichtigsten Komponenten eines Klimawandels auf globaler Ebene sind die variierende Sonneneinstrahlung aufgrund der [[Milanković-Zyklen]], das Rückstrahlvermögen ([[Albedo]]) der gesamten Erdoberfläche sowie die atmosphärische Konzentration von [[Treibhausgas]]en, vorwiegend [[Kohlenstoffdioxid]] (CO<sub>2</sub>) und [[Methan]] (CH<sub>4</sub>), die wiederum auf der Basis des [[Treibhauseffekt]]s die Stärke der temperaturabhängigen [[Wasserdampf-Rückkopplung]] beeinflussen. Der [[Klimazustand]] der letzten 2,6 Millionen Jahre ([[Quartär (Geologie)|Quartäre Kaltzeit]]) war der eines [[Känozoisches Eiszeitalter|Eiszeitalters]] und wurde hauptsächlich von den Milanković-Zyklen gesteuert, die die [[Sonnenstrahlung|Sonneneinstrahlung]] über die Dauer von 40.000 beziehungsweise 100.000 Jahren signifikant veränderten und so den Anstoß für den Wechsel der [[Kaltzeit]]en (Glaziale) mit [[Warmzeit]]en (Interglaziale) gaben.<ref name="10.1002/2015RG000482">{{cite journal | author=A. Berger | coauthors=M. Cruci, D. A. Hodell, C. Mangili, J. F. McManus, B. Otto-Bliesner, K. Pol, D. Raynaud, L. C. Skinner, P. C. Tzedakis, E. W. Wolff, Q. Z. Yin, A. Abe-Ouchi, C. Barbante, V. Brovkin, I. Cacho, E. Capron, P. Ferretti, A. Ganopolski, J. O. Grimalt, B. Hönisch, K. Kawamura, A. Landais, V. Margari, B. Martrat, V. Masson-Delmotte, Z. Mokeddem, F. Parrenin, A. A. Prokopenko, H. Rashid, M. Schulz, N. Vazquez Riveiros (Past Interglacials Working Group of PAGES) | year=2016 | month=März | title=Interglacials of the last 800,000 years | journal=Reviews of Geophysics (AGU Publications) | volume=54 | issue=1 | pages=162–219 | doi=10.1002/2015RG000482 | url=https://www.repository.cam.ac.uk/bitstream/handle/1810/252679/Berger_et_al-2016-Reviews_of_Geophysics-VoR.pdf?sequence=5&isAllowed=y | format=PDF | language= en}}</ref>
Die wichtigsten Komponenten eines Klimawandels auf globaler Ebene sind die variierende Sonneneinstrahlung aufgrund der [[Milanković-Zyklen]], das Rückstrahlvermögen ([[Albedo]]) der gesamten Erdoberfläche sowie die atmosphärische Konzentration von [[Treibhausgas]]en, vorwiegend [[Kohlenstoffdioxid]] (CO<sub>2</sub>) und [[Methan]] (CH<sub>4</sub>), die wiederum auf der Basis des [[Treibhauseffekt]]s die Stärke der temperaturabhängigen [[Wasserdampf-Rückkopplung]] beeinflussen. Der [[Klimazustand]] der letzten 2,6 Millionen Jahre ([[Quartär (Geologie)|Quartäre Kaltzeit]]) war der eines [[Känozoisches Eiszeitalter|Eiszeitalters]] und wurde hauptsächlich von den Milanković-Zyklen gesteuert, die die [[Sonnenstrahlung|Sonneneinstrahlung]] über die Dauer von 40.000 beziehungsweise 100.000 Jahren signifikant veränderten und so den Anstoß für den Wechsel der [[Kaltzeit]]en (Glaziale) mit [[Warmzeit]]en (Interglaziale) gaben.<ref name="10.1002/2015RG000482">{{cite journal | author=A. Berger | coauthors=M. Cruci, D. A. Hodell, C. Mangili, J. F. McManus, B. Otto-Bliesner, K. Pol, D. Raynaud, L. C. Skinner, P. C. Tzedakis, E. W. Wolff, Q. Z. Yin, A. Abe-Ouchi, C. Barbante, V. Brovkin, I. Cacho, E. Capron, P. Ferretti, A. Ganopolski, J. O. Grimalt, B. Hönisch, K. Kawamura, A. Landais, V. Margari, B. Martrat, V. Masson-Delmotte, Z. Mokeddem, F. Parrenin, A. A. Prokopenko, H. Rashid, M. Schulz, N. Vazquez Riveiros (Past Interglacials Working Group of PAGES) | year=2016 | month=März | title=Interglacials of the last 800,000 years | journal=Reviews of Geophysics (AGU Publications) | volume=54 | issue=1 | pages=162–219 | doi=10.1002/2015RG000482 | url=https://www.repository.cam.ac.uk/bitstream/handle/1810/252679/Berger_et_al-2016-Reviews_of_Geophysics-VoR.pdf?sequence=5&isAllowed=y | format=PDF | language= en}}</ref>

Version vom 17. Mai 2019, 22:48 Uhr

Das Klima ist der statistische Durchschnitt aller meteorologisch regelmäßig wiederkehrender Zustände und Vorgänge der Atmosphäre an einem Ort oder in einer Region und umfasst lange Zeiträume von in der Regel mindestens 30 Jahren. Damit beschreibt es die Gesamtheit aller an einem Ort möglichen Wetterzustände, einschließlich ihrer typischen Aufeinanderfolge sowie ihrer tages- und jahreszeitlichen Schwankungen. Das Klima wird dabei jedoch nicht nur von Prozessen innerhalb der Atmosphäre geprägt, sondern vielmehr durch das Wechselspiel aller Sphären der Erde (Kontinente, Meere, Atmosphäre) sowie von der Sonnenaktivität und anderen Einflüssen wie z. B. der Instabilität der Erdbahn (Eiszeiten und Warmzeiten).

Es umfasst unterschiedlichste Größenordnungen, wobei vor allem die zeitliche und räumliche Dimension des Klimabegriffs für dessen Verständnis von entscheidender Bedeutung ist. Die Wissenschaft, die die Gesetzmäßigkeiten des Klimas, dessen Eigenschaften, Entwicklungen und Erscheinungsbild erforscht, ist die Klimatologie.

Begriff

Definition

Je nach Entwicklungsstand und Schwerpunkt der Klimaforschung gab und gibt es verschiedene Definitionen.[1][2] Das Intergovernmental Panel on Climate Change (IPCC) arbeitet auf Grundlage einer weiten Begriffsbestimmung:[3]

„Klima im engeren Sinne ist normalerweise definiert als das durchschnittliche Wetter, oder genauer als die statistische Beschreibung in Form von Durchschnitt und Variabilität relevanter Größen über eine Zeitspanne im Bereich von Monaten bis zu Tausenden oder Millionen von Jahren. Der klassische Zeitraum zur Mittelung dieser Variablen sind 30 Jahre, wie von der Weltorganisation für Meteorologie definiert. Die relevanten Größen sind zumeist Oberflächenvariablen wie Temperatur, Niederschlag und Wind. Klima im weiteren Sinne ist der Zustand, einschließlich einer statistischen Beschreibung, des Klimasystems.“

Diese Definition des IPCC umfasst eine tiefenzeitliche Perspektive und nimmt neben der Atmosphäre noch weitere Subsysteme (Erdsphären) mit in den Blick. Sie spiegelt die Entwicklung seit der zweiten Hälfte des 20. Jahrhunderts, in der die interdisziplinäre Erforschung der Klimadynamik, einschließlich ihrer Ursachen, möglich wurde und in den Vordergrund des Interesses rückte. Damit gewann die zeitliche gegenüber der regionalen Dimension an Bedeutung.[2]

Der Deutsche Wetterdienst (DWD) definiert Klima enger, mit räumlichem Bezug und auf einer Zeitskala von Jahrzehnten:[4]

„Das Klima ist definiert als die Zusammenfassung der Wettererscheinungen, die den mittleren Zustand der Atmosphäre an einem bestimmten Ort oder in einem mehr oder weniger großen Gebiet charakterisieren.

Es wird repräsentiert durch die statistischen Gesamteigenschaften (Mittelwerte, Extremwerte, Häufigkeiten, Andauerwerte u.a.) über einen genügend langen Zeitraum. Im allgemeinen wird ein Zeitraum von 30 Jahren zugrunde gelegt, die sog. Normalperiode, es sind aber durchaus auch kürzere Zeitabschnitte gebräuchlich.“

In der geographischen Klimatologie wurde Klima von Joachim Blüthgen in seiner Allgemeinen Klimageographie wie folgt definiert:[5]

„Das geographische Klima ist die für einen Ort, eine Landschaft oder einen größeren Raum typische Zusammenfassung der erdnahen und die Erdoberfläche beeinflussenden atmosphärischen Zustände und Witterungsvorgänge während eines längeren Zeitraumes in charakteristischer Häufigkeitsverteilung.“

In der meteorologischen Klimatologie wird Klima nach Manfred Hendl wie folgt definiert:[6]

„Klima ist die örtlich charakteristische Häufigkeitsverteilung atmosphärischer Zustände und Vorgänge während eines hinreichend langen Bezugszeitraums, der so zu wählen ist, dass die Häufigkeitsverteilung der atmosphärischen Zustände und Vorgänge den typischen Verhältnissen am Bezugsort gerecht wird.“

Die für die Klimatologie grundlegende Definition stammt vom Wiener Meteorologen Julius von Hann (1839–1921),[2] der den Begriff verstand als „die Gesamtheit aller meteorologischen Erscheinungen, die den mittleren Zustand der Atmosphäre an irgendeiner Stelle der Erdoberfläche charakterisieren.“ (Handbuch der Klimatologie, 1883)[7] Von Hann begründete damit die „Mittelwertsklimatologie“. Er griff in seiner Definition auf die das 19. Jahrhundert prägende, auf die menschliche Erfahrung eines Ortes zielende Definition Alexander von Humboldts zurück;[2] dieser begriff Klima als „alle Veränderungen der Atmosphäre, die unsere Organe merklich afficieren“ (Kosmos Band I)[8].

Etymologie

Das Wort Klima (Plural: Klimate oder, näher am Griechischen, Klimata; selten (eingedeutscht) auch Klimas) ist eine Übernahme des altgriechischen Wortes κλίμα klíma, dessen erste Bedeutung (um 500 v. Chr.) in diesem Zusammenhang ‚Krümmung/Neigung [des Sonnenstandes]‘ war und zum Verb κλίνειν klínein, ‚neigen‘, ‚biegen‘, ‚krümmen‘, ‚anlehnen‘ gehört. Über das Spätlateinische clima (Verb: clinare, ‚beugen‘, ‚biegen‘, ‚neigen‘[9]) kam der Begriff schließlich ins Deutsche.[10]

Klima bezieht sich nicht auf die Ekliptik, also darauf, dass die Erdachse zur Ebene der Erdbahn einen Neigungswinkel von ca. 23,5 Grad aufweist, sondern auf die Kugelform der Erde. Dies entspricht der Erfahrung, dass nur durch eine Fortbewegung in Nord-Süd-Richtung die Beobachtung anderer Himmelsgegenden möglich ist. Die entsprechende Eindeutschung ist das Kompositum „Himmelsstrich“, das jedoch nur noch die geographische Gegend und nicht mehr die zugehörige Witterung bezeichnet.

Im 20. Jahrhundert hat sich dabei das Begriffsverständnis von der Wettergesamtheit (E. E. Fedoroff 1927) hin zur Synthese des Wetters (WMO 1979) entwickelt.

Zeitliche Dimension

Meteorologisches Observatorium auf dem Hohenpeißenberg (Oberbayern), 977 Meter über Meereshöhe gelegen

Als Abgrenzung zum Wetter (Zeitrahmen: Stunden bis wenige Wochen) und zur Witterung (Zeitrahmen: einige Tage bis etwa eine Woche, im Extremfall auch ein Monat oder eine Jahreszeit) versteht man Klima als einen über einen Zeitraum von oft mehreren Jahrzehnten, etwa 30 Jahre, statistisch ermittelten Zustand der Erdatmosphäre. Man bedient sich statistischer Methoden, um kurzfristige Schwankungen des Wetters zu filtern und charakteristische Werte für verschiedene meteorologische Größen zu erhalten, welche in ihrer Gesamtheit wiederum das Klima eines Ortes beschreiben. Hierbei stehen vor allem die Langzeittrends im Zentrum des Interesses, welche jedoch gegenläufig zu den Extremen bei langen Referenzzeiträumen verwischen. Basis für das Klima sind dabei jedoch immer das Wetter und die in Wetterstationen oder Wetter- und Umweltsatelliten erfassten Daten.

Ausgehend von dieser Datenbasis stellt sich für die zeitliche Dimension des Klimabegriffs die Frage, wie wechselhaft das Wetter ist, und welche Schwankungen daher die meteorologischen Größen aufweisen, welche das Wetter hinreichend beschreiben. Je größer diese Schwankungen sind, desto weniger repräsentativ ist eine statistische Auswertung der Daten eines kurzen Referenzzeitraumes. Der Anspruch, ein vornehmlich ortsspezifisches Klima und nicht nur zeitspezifische Wetterphänomene zu charakterisieren, ist in diesem Falle nicht aufrechtzuerhalten.
Doch auch Langzeitauswertungen verlieren durch diese Schwankungen teilweise ihren Aussagegehalt, weshalb insbesondere ein Mittelwert im Allgemeinen nicht ausreicht, um das Klima zeitlich richtig einzuschätzen. Eine Niederschlagsverteilung von einem Starkregen innerhalb eines halben Jahrzehntes und sonstiger Dürre als Mittelwert der Jahresniederschläge auf die fünf Einzeljahre zu verrechnen, illustriert die verzerrenden Effekte, welche aus einer unzureichenden Anwendung dieser statistischen Methoden erwachsen können. Betrachtet man das Klima eines Ortes mit einem Referenzzeitraum von 1000 Jahren, so hat man sicher alle Extremereignisse gefiltert, jedoch gilt dies bei einem solch langen Zeitraum auch für alle kurzfristigen Schwankungen. Selbst wesentliche Trends, wie der der Kleinen Eiszeit, könnten durch die Wahl eines solchen Zeitraums schlicht übersehen werden. Betrachtet man jedoch die Datenlage in Bezug auf weit zurückliegende Zeitalter, so zeigt sich hierbei, dass die zur Verfügung stehenden Klimaarchive nur über sehr lange Referenzzeiträume eine Auskunft bieten. Das Bestreben, diese Zeiträume zu reduzieren und so auch in Bezug auf die Klimageschichte kurzfristigere Trends in der Entwicklung des Klimas mit zu erfassen, ist eine wesentliche Bestrebung der Paläoklimatologie.

Diese modifizierenden Einflüsse richten sich aber immer nach dem konkreten Anwendungsfall und können nicht von vornherein und allgemeingültig festgelegt werden. Man kann sie nur nach einer Auswertung der Daten beantworten, um hierüber den Bezugs- oder Referenzzeitraum festzulegen, welcher, angepasst an die Datenlage, eine repräsentative Ermittlung des jeweiligen Klimacharakters und der zugehörigen Entwicklungstrends ermöglicht.

Ausgehend von der Problematik der Referenzzeiträume hat die Weltorganisation für Meteorologie sogenannte Klimanormalperioden festgelegt. Diese umfassen einen fest definierten Referenzzeitraum von 30 Jahren. Die festgelegten Intervalle sind die schon abgeschlossenen Zeiträume von 1931 bis 1960 und 1961 bis 1990, sowie die derzeitige Klimanormalperiode von 1991 bis 2020. Sie dienen unter anderem der Vergleichbarkeit der klimatischen Größen untereinander und werden hierbei vor allem zur Darstellung dieser Größen in Klimadiagrammen herangezogen. Viele Prognosen der zukünftigen Klimaentwicklung beziehen sich hierbei auf das Jahr 2050, also das Ende der nächsten Klimanormalperiode.

Räumliche Dimension

Der Begriff Klima wird häufig mit dem Weltklima beziehungsweise dem globalen Klima assoziiert. Jedoch ist die globale Temperaturentwicklung nicht repräsentativ für einzelne Regionen, die sogar über einen gewissen Zeitraum eine gegenläufige Tendenz aufweisen können. Ein Beispiel hierfür ist eine „cold blob“ genannte stabile Kälteblase im subpolaren Atlantik südlich von Grönland, die sich offenbar über Jahrzehnte entwickelt hat und die ihre Existenz möglicherweise umfangreichen Schmelzwassereinträgen des Grönländischen Eisschilds verdankt.[11] Umgekehrt kann ein lokaler Rekordsommer in global ermittelten Datenreihen „verschwinden“.

Da sich bei großen räumlichen Unterschieden auch Differenzen in der Methodik ergeben, hat sich eine dreistufige Einteilung der Maßstäbe bewährt.

  • Das Mikroklima umfasst einige Meter bis wenige Kilometer, wie eine Terrasse, eine Agrarfläche oder ein Straßenzug.
  • Das Mesoklima bezieht sich auf Landstriche (zum Beispiel eine Bergkette) bis zu einigen hundert Kilometern Ausdehnung.
  • Das Makroklima beschreibt kontinentale und globale Zusammenhänge.

Während beim Wetter eine enge Beziehung zwischen Größenordnung und Dauer eines Ereignisses besteht, ist dieser Zusammenhang für klimatologische Analysen weniger relevant.

Mikroklima (oder Kleinklima)

Mikroklima bezeichnet das Klima im Bereich der bodennahen Luftschichten bis etwa zwei Meter Höhe oder das Klima, das sich in einem kleinen, klar umrissenen Bereich ausbildet (zum Beispiel an gewissen Geländeformen oder in einer urbanen Umgebung).

Es wird entscheidend durch die Nähe der Bodenoberfläche und die dortige Bodenreibung des Windes geprägt. Hier herrschen schwächere Luftbewegungen, aber größere Temperaturunterschiede. Die Verschiedenheit der Böden, des Geländes, der Hanglage und der Pflanzengesellschaft kann auf engem Raum große Klimagegensätze hervorrufen. Das Mikroklima ist besonders für niedrig wachsende Pflanzen von Bedeutung, da sie ihr klimaempfindlichstes Lebensstadium in der bodennahen Luftschicht durchlaufen, und spielt zum Beispiel bei den Eigenschaften einer Weinbergslage im Qualitätsweinbau eine wichtige Rolle.

Auch der Mensch ist dem Mikroklima direkt ausgesetzt. Besonders im Lebensraum einer Stadt weicht das Mikroklima durch unterschiedliche Materialien, architektonische Gestaltung, Sonneneinstrahlung oder Beschattung oftmals von den natürlichen Gegebenheiten ab und kann sich durch Eingriffe in die jeweilige Bausubstanz oder deren Umgebung rasch und nachhaltig ändern.

Mesoklima

Mesoklimaten bestehen aus unterschiedlichen Einzelklimaten, die eine Ausdehnung zwischen einigen hundert Metern und wenigen hundert Kilometern besitzen, im Regelfall jedoch Areale im unteren Kilometerbereich umfassen. Aufgrund dieses breiten, aber lokalen Spektrums spielen hierbei viele Aspekte der angewandten Meteorologie und der Klimatologie eine große Rolle, beispielsweise das Stadtklima oder das Regenwaldklima. Generell werden alle Lokalklimate und Geländeklimate zu den Mesoklimaten gezählt, wie die Lokalklimate von Ökosystemen, wobei bei diesen der Übergang zu den Mikroklimaten fließend ist.

Makroklima

Vom Makroklima oder Großklima spricht man bei großskaligen Effekten mit einer Ausdehnung von mehr als in etwa 500 Kilometern. Hierzu zählen daher vor allem die Elemente der globalen Zirkulation und des großen marinen Förderbandes. Auch das Weltklima selbst zählt hierzu. Als Orientierung in Abgrenzung zu Mesoklimaten werden alle die gesamte Erde umspannenden sowie ozean- bzw. kontinentweit wirksamen Effekte zu den Makroklimaten gezählt. Weniger eindeutig, jedoch im Regelfall zutreffend, ordnet man auch überregionale Effekte wie den Monsun, den El Niño oder sehr große Regionalklimate wie den Amazonas-Regenwald mit zu den Makroklimaten. Alle Makroklimate stehen dabei in einer engen gegenseitigen Wechselwirkung und beeinflussen sich daher auf vielfältige Weise, wobei vor allem diese Wechselwirkungen noch nicht vollständig verstanden und Thema aktueller Forschung sind. Letztlich kann aufgrund dessen kein Makroklima für sich allein betrachtet werden, und in ihrem dynamischen Zusammenspiel führen sie direkt zum umfassenden Konzept des weltweiten Klimas.

Klimazonen und Klimaklassifikation

Großklimate der Erde (effektive Klimaklassifikation nach Köppen-Geiger, vereinfachte Darstellung):
  • Tropisches Regenwaldklima
  • Savannenklima
  • Steppenklima
  • Wüstenklima
  • Etesienklima
  • Feuchtgemäßigtes Klima
  • Sinisches Klima
  • Feuchtkontinentales Klima
  • Transsibirisches Klima
  • Sommertrockenes Kaltklima
  • Tundrenklima
  • Eisklima
  • Gebiete mit gleichen klimatischen Bedingungen werden in Klimazonen eingeteilt und dadurch klassifiziert. Die bekannteste Klassifikation stammt von dem Geowissenschaftler Wladimir Köppen (1846–1940). Sein 1936 veröffentlichtes Werk Geographisches System der Klimate gilt als die erste objektive Klimaklassifizierung (siehe Abbildung rechts). Es erlangte vor allem durch Köppens Zusammenarbeit mit dem Klimatologen Rudolf Geiger weite Verbreitung und besitzt auch gegenwärtig noch große Bedeutung.

    Ausdehnung, Struktur und Lage der Klimazonen waren von jeher abhängig vom Zustand und den Schwankungen des weltweiten Klimas über längere oder kürzere Zeiträume. Laut verschiedenen Studien existiert seit Mitte des 20. Jahrhunderts eine deutliche Tendenz hin zur Ausbildung von wärmeren und trockeneren Klimaten.[12] Demnach ist mit jedem Grad Temperaturerhöhung eine Verschiebung der Klimazonen um 100 bis 200 Kilometer nach Norden verbunden.[13]

    In der Wissenschaft wird allgemein angenommen, dass bei weiter zunehmender Erwärmung beträchtliche Folgen für Flora und Fauna aller Klimazonen zu erwarten sind. So könnten bis zum Jahr 2100 knapp 40 Prozent der weltweiten Landflächen von der einsetzenden Umwandlung der bestehenden Klimate betroffen sein, mit der Gefahr von umfangreichem Artenschwund und großflächiger Entwaldung. Besonders anfällig für diesen Wechsel wären subtropische und tropische Gebiete, da sie nach paläobiologischen Analysen in den letzten Jahrtausenden nur marginalen Schwankungen ausgesetzt waren und deshalb eine gering ausgeprägte Anpassungsfähigkeit besitzen. Aufgrund der Polaren Verstärkung würde der Erwärmungsprozess am nachhaltigsten die arktischen Regionen beeinflussen, mit erheblichen Auswirkungen auf die dort existierenden Biotope.[14]

    Klimasystem

    Das Klimasystem stellt eine Erweiterung des Konzeptes der Klimafaktoren dar. Das Klimasystem der Erde setzt sich hierbei aus seinen verschiedenen Subsystemen (Erdsphären) zusammen, die fünf Hauptkomponenten sind: Atmosphäre, Hydrosphäre, Kryosphäre, Biosphäre und die Pedosphäre bzw. Landoberfläche.[15] Die Schwankungen innerhalb und Wechselwirkungen zwischen den Subsystemen bezeichnet man hierbei als Klimarauschen. Der energetische Antrieb des Klimasystems liegt in der Solarstrahlung und zu einem geringen Anteil auch in der Erdwärme der Asthenosphäre, wobei diese als Ursache des Vulkanismus eine wesentlich entscheidendere Auswirkung auf die stoffliche Zusammensetzung der Erdatmosphäre und damit deren Strahlungshaushalt besitzt. Entscheidend für das Wechselspiel der Subsysteme ist deren unterschiedliche zeitliche Dynamik. Betrachtet man das Klima in sehr kurzen Zeiträumen, beispielsweise den Klimanormalperioden, so kann man viele klimatisch entscheidende Faktoren vernachlässigen, da diese nur über sehr lange Zeiträume einem Wandel unterliegen. Die Drift der Lithosphärenplatten prägt auf lange Sicht die Land-Meer-Verteilung und den Meeresspiegel, beträgt aber nur rund 3 bis 20 Zentimeter pro Jahr und ist damit in kurzen Zeitspannen irrelevant. Man kann an diesem Beispiel erkennen, dass die klimatische Rolle einer Erdsphäre immer einen bestimmten Zeitraum bzw. einer zeitlichen Trägheit zuzuordnen ist. Diese Trägheit kann im Falle der Lithosphäre Jahrmillionen betragen oder im Falle der Atmosphäre nur wenige Jahre bis Jahrzehnte. Insbesondere kann sich die Zusammensetzung der Atmosphäre sehr schnell ändern, wirkt ihrerseits jedoch nur in sehr langen Zeitskalen auf eine Veränderung der Zusammensetzung der Lithosphäre hin. Diese Skalen sind jedoch nicht zwingend, wie beispielsweise der Vulkanismus zeigt.

    Der Begriff des Klimasystems ist jedoch nicht allein auf das Klimasystem der Erde als Ganzes beschränkt, sondern kann auch auf niederskalige Systeme angewandt werden, wobei diese dann wiederum Teile des globalen Klimasystems darstellen. Beispiele hierfür sind das Land-See-Windsystem oder die Monsunsysteme.

    Klimaelemente

    Als Klimaelemente werden die messbaren Eigenschaften des irdischen Klimasystems bezeichnet, die einzeln oder durch ihr Zusammenwirken das Klima prägen. Es handelt sich dabei zumeist um meteorologische Größen, die mittels Wetterstationen, Wettersonden oder Satelliten erfasst werden, aber auch um Datenreihen aus der Ozeanographie und verschiedenen Disziplinen der Geowissenschaften. In der Meteorologie liegt der Schwerpunkt hierbei auf der räumlichen Datenanalyse, während in der Klimatologie die Zeitreihenanalyse im Vordergrund steht.

    Die wichtigsten Messgrößen sind:

    Mittlere jährliche Globalstrahlungssummen in Europa

    Klimafaktoren

    Unter Klimafaktoren versteht man verschiedenste Prozesse und Zustände, durch welche das Klima hervorgerufen, erhalten oder verändert wird. Man unterscheidet nach primären und sekundären Klimafaktoren, wobei die primären Klimafaktoren elementarer Natur sind, und sich die sekundären Klimafaktoren demzufolge aus den primären Klimafaktoren ableiten. Zu Ersteren zählen die Sonnenstrahlung, die Land-Meer-Verteilung, die Zusammensetzung der Erdatmosphäre und die Höhe des Standortes. Zwar lassen sich diese oft auch auf Ursachen wie die Plattentektonik oder astrophysikalische Phänomene zurückführen, diese selbst sind jedoch nicht direkt am Klima beteiligt und werden daher nur indirekt zu den Klimafaktoren gezählt.

    Die sekundären Klimafaktoren beinhalten verschiedene Kreisläufe und Zirkulationssysteme der Erde, welche sich direkt oder indirekt aus den primären Klimafaktoren ergeben. Hierzu zählen vor allem die allgemeine Zirkulation der Atmosphäre, die Meeresströmungen, der Wasserkreislauf und bedingt auch der Kreislauf der Gesteine. Auch regionale Zirkulationssysteme wie El Niño, La Niña und Monsune werden hierzu gezählt.

    Zusätzlich differenziert man auch in einigen Anwendungsfällen danach, ob die Klimafaktoren bzw. deren Wandel anthropogenen oder natürlichen Ursprungs sind.

    Klimawandel

    Fennoskandischer Eisschild und alpine Vergletscherung während der Weichsel- beziehungsweise Würm-Kaltzeit

    Im Unterschied zu regional oder hemisphärisch auftretenden Klimaschwankungen (auch Klimafluktuationen oder Klimaanomalien, mit einer Dauer von einigen Jahrzehnten oder Jahrhunderten) erfolgt ein weltweiter Klimawandel durch die markante Veränderung des Strahlungsantriebs, der das Erdsystem aus einem thermisch-radiativen Gleichgewicht in ein neues Gleichgewicht überführt. Dieser Prozess bewirkt je nach geophysikalischer Konstellation eine deutliche Abkühlung oder eine starke Erwärmung über unterschiedlich lange Zeiträume. Die gegenwärtige, durch den Menschen verursachte (anthropogene) globale Erwärmung ist ein Beispiel für einen rasch fortschreitenden, aber noch nicht abgeschlossenen Klimawandel, [16] dessen bisheriger Verlauf in der Klimageschichte der letzten 66 Millionen Jahre ein singuläres Ereignis darstellt.[17]

    Die wichtigsten Komponenten eines Klimawandels auf globaler Ebene sind die variierende Sonneneinstrahlung aufgrund der Milanković-Zyklen, das Rückstrahlvermögen (Albedo) der gesamten Erdoberfläche sowie die atmosphärische Konzentration von Treibhausgasen, vorwiegend Kohlenstoffdioxid (CO2) und Methan (CH4), die wiederum auf der Basis des Treibhauseffekts die Stärke der temperaturabhängigen Wasserdampf-Rückkopplung beeinflussen. Der Klimazustand der letzten 2,6 Millionen Jahre (Quartäre Kaltzeit) war der eines Eiszeitalters und wurde hauptsächlich von den Milanković-Zyklen gesteuert, die die Sonneneinstrahlung über die Dauer von 40.000 beziehungsweise 100.000 Jahren signifikant veränderten und so den Anstoß für den Wechsel der Kaltzeiten (Glaziale) mit Warmzeiten (Interglaziale) gaben.[18]

    Nicht immer waren Kohlenstoffdioxid und/oder Methan die Hauptfaktoren eines Klimawandels. Sie fungierten im Rahmen natürlicher Klimawandel-Ereignisse manchmal als „Rückkopplungsglieder“, die einen Klimatrend verstärkten, beschleunigten oder abschwächten.[19] In diesem Zusammenhang sind neben den Erdbahnparametern auch Feedbacks wie die Eis-Albedo-Rückkopplung, die Vegetationsbedeckung, Verwitterungsprozesse, die Variabilität des Wasserdampfgehaltes sowie eine Vielzahl geologischer und geophysikalischer Einflüsse zu berücksichtigen.

    Eine spezielle Form des Klimawandels sind abrupte Klimawechsel. Sie wurden in der Erdgeschichte durch Impaktereignisse, Eruptionen von Supervulkanen, großflächige Magmaausflüsse, schnelle Veränderungen von Meeresströmungen oder durch rasch ablaufende Rückkopplungsprozesse im Klimasystem ausgelöst, oft in Verbindung mit ökologischen Krisen.[20]

    Klimageschichte

    Rekonstruktion des Temperaturverlaufs während der Quartären Kaltzeit anhand verschiedener Eisbohrkerne

    Die Erde bildete sich vor 4,57 Milliarden Jahren aus mehreren Protoplaneten unterschiedlicher Größe. Ihre heutige Masse soll sie der Kollisionstheorie zufolge durch einen Zusammenstoß mit einem marsgroßen Himmelskörper namens Theia vor 4,52 Milliarden Jahren erhalten haben. Dadurch wurden Teile des Erdmantels und zahlreiche Trümmerstücke von Theia in den Orbit geschleudert, aus denen sich innerhalb von 10.000 Jahren der zu Beginn glutflüssige Mond formte.[21] Über dieses früheste Stadium der Erdgeschichte sind mangels verwertbarer Klimadaten keine gesicherten Aussagen möglich. Erst ab der Zeit vor 4,0 bis 3,8 Milliarden Jahren, nach der Entstehung der Ozeane und erster Lebensformen, existieren fossile Spuren und Proxys („Klimaanzeiger“), die Rückschlüsse auf klimatische Bedingungen erlauben. Auf Basis dieser Hinweise wird angenommen, dass über weite Teile des Archaikums ein relativ warmes Klima herrschte.[22] Diese Phase endete im frühen Proterozoikum mit dem Übergang in die 300 Millionen Jahre dauernde Paläoproterozoische Vereisung.

    Gegen Ende des Präkambriums diffundierte Sauerstoff in größeren Mengen bis in die Stratosphäre, und es bildete sich auf der Grundlage des Ozon-Sauerstoff-Zyklus eine Ozonschicht. Diese schützte fortan die Erdoberfläche vor der solaren UV-Strahlung und ermöglichte so die Besiedelung der Kontinente durch Flora und Fauna. Während des Erdaltertums nahm der Sauerstoffgehalt rasch zu. Er entsprach zu Beginn des Karbons (360 mya) erstmals der heutigen Konzentration von 21 Prozent und erreichte gegen Ende der Periode etwa 35 Prozent. Im weiteren Verlauf der Erd- und Klimageschichte war die Atmosphäre in Abhängigkeit von biologischen und geophysikalischen Einflüssen immer wieder starken Veränderungen unterworfen. Die Sauerstoff-, Kohlenstoffdioxid- und Methan-Anteile schwankten zum Teil erheblich und spielten direkt oder indirekt eine entscheidende Rolle bei einer Reihe von Klimawandel-Ereignissen.[23]

    Bei Analyse der Klimageschichte spricht eine wachsende Zahl von Belegen für die Annahme, dass fast alle bekannten Massenaussterben oder die deutliche Reduzierung der Biodiversität mit raschen Klimaänderungen und deren Folgen verknüpft waren. Daraus resultierte die Erkenntnis, dass diese Ereignisse nicht zwangsläufig an langfristige geologische Prozesse gekoppelt sein müssen, sondern häufig einen katastrophischen und zeitlich eng begrenzten Verlauf genommen haben. Biologische Krisen korrelierten in den letzten 540 Millionen Jahren mehrmals mit einer Abkühlungsphase (mit einem weltweiten Temperaturrückgang von 4 bis 5 °C), häufiger jedoch mit starken Erwärmungen im Bereich von 5 bis 10 °C.[24] Im letzteren Fall trug ein Bündel von Nebenwirkungen (Vegetationsrückgang, Ausgasungen von Gift- und Schadstoffen, Sauerstoffdefizite, Versauerung der Ozeane etc.) dazu bei, die irdische Biosphäre weiter zu destabilisieren.[25][26]

    Die im 20. Jahrhundert entwickelte radiometrische Datierung, die eine absolute Altersbestimmung magmatischer Gesteine und vulkanogener Sedimente erlaubt, führte zur Etablierung der Subdisziplinen Geochronologie und Chronostratigraphie und besitzt große Bedeutung für alle Perioden des 541 Millionen Jahre umfassenden Phanerozoikums und darüber hinaus. Gegenwärtig gebräuchliche Methoden sind die Uran-Thorium-Datierung und die Uran-Blei-Datierung. Um möglichst genaue Resultate zu erzielen, werden in letzter Zeit vielfach Zirkonkristalle eingesetzt. Zusätzlich wird zur Rekonstruktion vergangener Klimate und ihrer Umweltbedingungen eine Reihe verschiedener Isotope herangezogen, mit deren Hilfe beispielsweise frühere Meerestemperaturen, CO2-Konzentrationen oder Veränderungen des Kohlenstoffzyklus ermittelt werden können. Für jüngere erdgeschichtliche Abschnitte (Pleistozän und Holozän) kommen weitere Analysewerkzeuge zur Anwendung. Mit die wichtigsten sind die Dendrochronologie (Jahresring-Auswertung),[27] die Palynologie (Pollenanalyse), die Warvenchronologie (Bändertondatierung),[28] Eisbohrkerne,[29] Ozeanische Sedimente sowie Tropfsteine wie Stalagmiten und Stalaktiten.

    Klimaereignisse in historischer Zeit und ihre Auswirkungen auf menschliche Gesellschaften sind Forschungsgegenstand der Historischen Klimatologie beziehungsweise der Umweltgeschichte, wobei vielfach auf schriftliche Aufzeichnungen zurückgegriffen wird. Mitteleuropa verfügt über einen so reichhaltigen Fundus zeitgenössischer Berichte, dass etwa ab dem Jahr 1500 für nahezu jeden einzelnen Monat aussagekräftige Schilderungen der damaligen Witterung vorliegen. Klimaanomalien wie die Mittelalterliche Warmzeit oder die Kleine Eiszeit werden dabei ebenso einer wissenschaftlichen Analyse unterzogen wie einzelne Extreme, wie beispielsweise das von katastrophaler Dürre geprägte Jahr 1540.[30]

    Erdbahnparameter

    Maximaler und minimaler Neigungswinkel der Erdachse, eingebunden in einen Zyklus von 41.000 Jahren

    Dass langfristige Schwankungen des globalen Klimas auf zyklischen Veränderungen der Erdachse und der Erdumlaufbahn beruhen könnten, wurde bereits in der 2. Hälfte des 19. Jahrhunderts vermutet.[31] Eine erste umfassende Darstellung auf der Basis umfangreicher Berechnungen gelang dem Geophysiker und Mathematiker Milutin Milanković (1879–1958). Sein in jahrelanger Arbeit erstelltes Erklärungsmodell berücksichtigt die periodischen Veränderungen der Erdbahn (von leicht elliptisch bis fast kreisförmig), die Neigung der Erdachse sowie das Kreiseln der Erde um ihre Rotationsachse (Präzession).

    Die nach Milanković benannten Zyklen beeinflussen die Verteilung und zum Teil die Intensität der Sonneneinstrahlung auf der Erde. Vor allem der die Exzentrizität steuernde Großzyklus mit einer Dauer von 405.000 Jahren bildete über weite Teile des Phanerozoikums einen stabilen kosmischen „Taktgeber“ und kann nach neueren Erkenntnissen bis in die Obertrias vor etwa 215 Millionen Jahren zurückverfolgt werden.[32] Eine dauerhafte Wirkung entfalteten die Zyklen speziell während verschiedener Glazialphasen mit niedrigen Treibhausgas-Konzentrationen, wobei ihr Einfluss auf den Verlauf der Quartären Kaltzeit aufgrund deren zeitlicher Nähe gut nachvollzogen werden kann.[18] Da die Milanković-Zyklen jedoch zu schwach sind, um als primärer Antrieb für die gesamte Klimageschichte in Frage zu kommen, scheinen sie im Klimasystem in erster Linie als „Impulsgeber“ zu fungieren. Bei der Modellierung von Klimaverläufen werden daher zusätzliche Faktoren und Rückkopplungseffekte mit einberechnet.

    Seit den 1980er Jahren ist die Theorie in modifizierter und erweiterter Form fester Bestandteil von Paläoklimatologie und Quartärforschung und wird vielfach als wichtiger Einflussfaktor sowie als Instrument zur Rekonstruktion der Eiszeitphasen herangezogen.[33]

    Klimasensitivität

    Absorptionsspektren der Gase der Erdatmosphäre

    Die Klimasensitivität ist nach einer häufig verwendeten Definition jene Temperaturzunahme, die sich bei einer Verdoppelung der atmosphärischen Kohlenstoffdioxid-Konzentration einstellt. Bezogen auf die aktuelle Globale Erwärmung würde dies eine CO2-Verdoppelung von vorindustriellen 280 ppm auf 560 ppm bedeuten. Mit Stand 2019 beträgt die CO2-Konzentration ungefähr 412 ppm. Neben Kohlenstoffdioxid sind noch weitere Gase am Treibhauseffekt beteiligt, deren Beitrag in der Regel als CO2-Äquivalente dargestellt wird.

    Die Eingrenzung der Klimasensitivität auf einen möglichst genauen Temperaturwert ist für die Kenntnis der künftigen Klimaentwicklung von grundlegender Bedeutung. Bei ausschließlicher Betrachtung der im Labor gemessenen Strahlungswirkung von CO2 beträgt die Klimasensitivität 1,2 °C. Zur Klimasensitivität trägt jedoch auch eine Reihe positiver Rückkopplungseffekte im Klimasystem bei, wobei zwischen schnellen und langsamen Feedbacks unterschieden wird. Wasserdampf-, Eis-Albedo- und Aerosolrückkopplung sowie die Wolkenbildung zählen zu den schnellen Rückkopplungen. Die Eisschilde, kohlenstoffbindende Verwitterungsprozesse sowie die Ausbreitung oder Reduzierung der Vegetationsfläche gelten als langsame Rückkopplungseffekte und werden der Erdsystem-Klimasensitivität zugeordnet.

    Die Klimasensitivität als dynamischer Faktor hängt in hohem Maße vom jeweiligen Klimazustand ab. Beispiele aus der Erdgeschichte zeigen, dass sich die Klimasensitivität mit Zunahme des Strahlungsantriebs und der damit steigenden Globaltemperatur ebenfalls erhöht. So wird beispielsweise für die starke Erwärmungsphase des Paläozän/Eozän-Temperaturmaximums vor 55,5 Millionen Jahren eine Klimasensitivität im Bereich von 3,7 bis 6,5 °C postuliert.[34] Ähnlich hohe Werte werden auch für den größten Teil des übrigen Känozoikums veranschlagt.[35]

    In den vergangenen Jahrzehnten wurden der Klimasensitivität sehr unterschiedliche Werte zugeschrieben. Die Sachstandsberichte des Intergovernmental Panel on Climate Change (IPCC), die den jeweils aktuellen Forschungsstand zusammenfassen, gelten hierbei als maßgebliche und zuverlässige Quelle. Im 2007 erschienenen Vierten Sachstandsbericht lag der als „wahrscheinlich“ eingestufte Temperaturkorridor zwischen 2 und 4,5 °C. Laut dem 2013 veröffentlichten Fünften Sachstandsbericht betrug die Bandbreite zwischen 1,5 und 4,5 °C.[36] Demnach liegt der beste mittlere Schätzwert für die gegenwärtige Klimasensitivität bei rund 3 °C.

    Klimafaktor Mensch

    Globaler Temperaturindex „Oberflächentemperaturen Land und See“ seit 1880, Differenz zum Mittelwert der Jahre 1951 bis 1980

    Seit Beginn der Industrialisierung im 19. Jahrhundert erhöhen die Menschen den Anteil an Treibhausgasen in der Atmosphäre in signifikantem Umfang. Besonders die Verbrennung fossiler Brennstoffe trug dazu bei, dass die Kohlenstoffdioxid-Konzentration von 280 ppm (Teile pro Million) auf gegenwärtig (2019) 412 ppm stieg. Hinzu kommen beträchtliche Methan-Emissionen, vor allem bedingt durch intensive Tierhaltung, sowie weitere Treibhausgase wie Distickstoffmonoxid (Lachgas) oder Carbonylsulfid. Ein bedeutender Faktor ist zudem die großflächige Entwaldung insbesondere der tropischen Regenwälder. Der Temperaturanstieg gegenüber der vorindustriellen Zeit bis zum Jahr 2017 betrug nach Angaben des Intergovernmental Panel on Climate Change (IPCC) etwa 1 °C. Bis zum Ende des 21. Jahrhunderts rechnet der IPCC mit einer Temperatursteigerung im Bereich von 1,1 bis 6,4 °C. Die Zunahme von Treibhausgasen und der damit gekoppelte Temperaturanstieg sind nach einhelliger wissenschaftlicher Meinung auf menschliche Aktivitäten zurückzuführen. Wenn es nicht gelingt, die anthropogenen Emissionen drastisch zu reduzieren, drohen zahlreiche und zum Teil schwerwiegende Folgen, zu denen steigende Meeresspiegel, ein zunehmendes Artensterben und erhebliche Auswirkungen auf menschliche Gemeinschaften zählen.[37]

    Kippelemente

    Kippelemente (englisch Tipping Elements) sind in der Erdsystemforschung Bestandteile des Klimasystems, die durch geringe äußere Einflüsse einen neuen Zustand annehmen, wenn sie einen „Kipppunkt“ bzw. „Tipping-Point“ erreichen. Diese Änderungen können abrupt erfolgen und gelten zum Teil als irreversibel. Das Konzept der Kippelemente wird vor allem in der geowissenschaftlichen Fachliteratur seit Beginn des Jahrtausends als bis dahin vernachlässigte Möglichkeit diskontinuierlicher Prozesse – vor allem im Zusammenhang mit der gegenwärtigen globalen Erwärmung – auf breiter Basis diskutiert.[38]

    In einer ersten Bestandsaufnahme wurden die folgenden potenziellen Kippelemente identifiziert:

    In den folgenden Jahren wurden weitere Kippelemente benannt, darunter die Methan-Freisetzung aus den Ozeanen und aus tauenden Dauerfrostböden[39] sowie das weltweite Absterben von Korallenriffen.[40] Durch die Aktivierung einiger Kippelemente könnten in Form von Rückkopplungen weitere Kipppunkte überschritten werden. Damit bestünde das Risiko einer Kettenreaktion („Kaskade“), die das Klima unumkehrbar in ein Warmklima überführen würde.[41]

    Im Hinblick auf verschiedene geochronologische Perioden gibt es eine Reihe deutlicher Hinweise, dass bei Erreichen bestimmter Kipppunkte ein abrupter Wechsel in einen neuen Klimazustand stattfand,[42] wie zum Beispiel im späten Devon vor etwa 360 Millionen Jahren.[43]

    Klimamodelle

    Klimamodelle sind Computermodelle zur Berechnung des Klimas und dessen Einflussfaktoren über einen bestimmten Zeitraum und werden sowohl zur Analyse künftiger Entwicklungen als auch zur Rekonstruktion von Paläoklimaten verwendet. Die Projektionen der Klimamodelle sind naturgemäß unsicherer als die der Wettermodelle, da hierbei wesentlich größere Zeiträume in Betracht gezogen und eine Reihe zusätzlicher Parameter berücksichtigt werden müssen. Aus diesem Grund werden keine Klimaprognosen, sondern Szenarien mit bestimmten Wahrscheinlichkeitskorridoren erstellt. Ein Klimamodell basiert in der Regel auf einem Meteorologiemodell, wie es auch zur numerischen Wettervorhersage verwendet wird. Dieses Modell wird jedoch für die Klimamodellierung modifiziert und erweitert, um alle Erhaltungsgrößen korrekt abzubilden. Oftmals wird dabei ein Ozeanmodell, ein Schnee- und Eismodell für die Kryosphäre und ein Vegetationsmodell für die Biosphäre angekoppelt.[44]

    Die meisten Modelle werden an realen Klimaverläufen der Gegenwart und der Vergangenheit kalibriert, so dass sie nicht nur aktuelle Entwicklungen, sondern beispielsweise auch Klimazyklen über mehrere 100.000 Jahre weitgehend korrekt nachbilden können. Somit wurde es möglich, den charakteristischen Ablauf der Quartären Eiszeit mit ihren Warm- und Kaltphasen, einschließlich der Milanković-Zyklen, des Treibhauseffekts und der Eis-Albedo-Rückkopplung, auf ein solides theoretisches Fundament zu stellen.[45] Allerdings existiert für einige Rückkopplungen, vor allem in Verbindung mit den Kippelementen im Erdsystem, nur eine relativ dünne Datenbasis, so dass es selbst unter Einbeziehung der Klimageschichte schwierig ist, valide Resultate zu erzielen.

    Klima in Deutschland

    Monatsmitteltemperaturen und monatliche Abweichungen für Deutschland

    Deutschland liegt vollständig in der gemäßigten Klimazone Mitteleuropas im Bereich der Westwindzone und befindet sich im Übergangsbereich zwischen dem maritimen Klima in Westeuropa und dem kontinentalen Klima in Osteuropa. Das für die relativ hohe nördliche Breite milde Klima wird unter anderem vom Golfstrom beeinflusst.

    Der bundesweite Gebietsmittelwert der Lufttemperatur beträgt im Jahresmittel 8,2 °C (Normalperiode 1961–1990), der niedrigste Monatsdurchschnitt wird mit −0,5 °C im Januar und der höchste mit 16,9 °C im Juli erreicht. Spitzenreiter bei den Jahresdurchschnittstemperaturen ist der Oberrhein-Graben mit über 11 °C, während Oberstdorf, 800 Meter über Meereshöhe gelegen, rund 6 °C verzeichnet. Der kälteste Ort ist der Gipfel der 2962 m hohen Zugspitze mit einer durchschnittlichen Jahrestemperatur von fast −5 °C. Die mittlere jährliche Niederschlagshöhe beträgt 789 mm, die mittleren monatlichen Niederschlagshöhen liegen zwischen 49 mm im Februar und 85 mm im Juni. Die Niederschlagshöhe schwankt in einem Bereich von über 1000 mm in der Alpenregion und den Mittelgebirgen und unter 500 mm im Regenschatten des Harzes zwischen Magdeburg im Norden, Leipzig im Osten und Erfurt im Süden. Generell nimmt die Humidität von West nach Ost ab.

    In den letzten Jahrzehnten verzeichnet auch Deutschland einen deutlichen Erwärmungstrend: Nach den Statistiken des Deutschen Wetterdienstes lagen in allen Jahren seit 1988 (ausgenommen 1996 und 2010) die Durchschnittstemperaturen über dem langjährigen Mittel (1961–1990) von 8,2 °C. 2014 wurde mit 10,3 °C erstmals ein zweistelliger Jahreswert ermittelt, übertroffen nur vom bisherigen Rekordjahr 2018 mit 10,5 °C. Besonders die Sommermonate sind deutlich wärmer geworden, zudem beginnt der Frühling im Durchschnitt fünf Tage pro Jahrzehnt früher. Als Folge dieser Entwicklung bleiben Zugvögel fast einen Monat länger in Deutschland als noch in den 1970er Jahren.

    Die tiefste jemals in Deutschland gemessene Temperatur wurde am 24. Dezember 2001 mit −45,9 °C am Funtensee in den Berchtesgadener Alpen gemessen. Allerdings handelt es sich hierbei um eine besonders exponierte Lage, da in der abflusslosen Senke über Schneebedeckung ein Kaltluftstau entstehen kann. Der Deutsche Wetterdienst gibt als offiziellen Rekordwert −37,8 °C an, gemessen am 12. Februar 1929 in Hüll (Ortsteil von Wolnzach, Kreis Pfaffenhofen). Die bisher höchste Temperatur wurde am 5. Juli 2015 mit 40,3 °C im bayerischen Kitzingen verzeichnet.

    Die sonnigsten Regionen Deutschlands sind in den nördlichen und südlichen Randbereichen des Landes zu finden. Mit 1869 Sonnenstunden pro Jahr ist Kap Arkona auf der Insel Rügen der Rekordhalter für die aktuelle Referenzperiode 1981–2010.[46] Im Süden befinden sich die sonnigsten Regionen am südlichen Oberrhein, in der Region um Stuttgart und im bayerische Alpenvorland einschließlich der Landeshauptstadt München. In diesen Gebieten werden im Durchschnitt jährlich etwa 1800 Sonnenstunden gemessen. Allerdings ist deren Verteilung im Hinblick auf die Jahreszeiten sehr unterschiedlich: Während an der Ostseeküste die meisten Sonnenstunden im Frühjahr und Sommer auftreten, sind im Süden und besonders im Alpenvorland die Wintermonate deutlich sonniger als in den übrigen Landesteilen.

    Witterungsbedingungen wie ausgeprägte Dürren oder Hitzewellen waren bisher aufgrund der ausgleichenden Westwindzone relativ selten, ereigneten sich jedoch im Jahresverlauf 2018 nicht nur in Deutschland, sondern fast überall in Europa, und könnten laut verschiedenen Untersuchungen künftig zunehmen.[47] Ein gegenteiliges Extrem war eine von Ende Januar bis Mitte Februar 2012 dauernde europaweite Kältephase. In den Herbst- und Wintermonaten gibt es immer wieder einzelne Sturm- oder Orkantiefs, die meistens über die Nordsee nach Osten ziehen und vor allem Norddeutschland und die Mittelgebirge treffen, wie zum Beispiel die Orkantiefs Lothar im Dezember 1999 und Kyrill im Januar 2007. Regelmäßig ereignen sich auch Hochwasser, die nach intensiven Niederschlägen im Sommer (Oderhochwasser 1997, Hochwasser in Mitteleuropa 2002) oder nach der Schneeschmelze zu Überschwemmungen mit erheblichem Schadenspotenzial führen können. Dürren betreffen im Normalfall den eher trockenen Nordosten Deutschlands, können jedoch mitunter auf das ganze Land übergreifen, wie während der Hitzewellen 2003, 2015 und 2018.

    Weitere Wetterextreme wie Gewitterstürme und Tornados entstehen vorwiegend im Früh- und Hochsommer. Während Süddeutschland schwerpunktmäßig von Hagelunwettern heimgesucht wird, nimmt die Tornadotendenz nach Nordwesten hin leicht zu. Eine Besonderheit sind hierbei die an der Nord- und Ostseeküste hauptsächlich im Spätsommer auftretenden Wasserhosen. Insgesamt ist jährlich mit 30 bis 60 Tornados zu rechnen, in manchen Jahren auch mit deutlich mehr (119 Tornados 2006).[48]

    Literatur

    Begriff und Definition des Klimas

    • P. Hupfer: Das Klimasystem der Erde. Akad.-Verlag, Berlin 1991, ISBN 3-05-500712-3.
    • K. Bernhardt: Aufgaben der Klimadiagnostik in der Klimaforschung. In: Gerl. Beitr. Geophys. 96, 1987, S. 113–126.
    • M. Hantel, H. Kraus, C. D. Schönwiese: Climate definition. Springer Verlag, Berlin 1987, ISBN 3-540-17473-7.
    • M. Hogger: Climatypes. Hogger Verlag, Ainring 2007.
    • Christoph Buchal, Christian-Dietrich Schönwiese: Klima. Die Erde und ihre Atmosphäre im Wandel der Zeiten. Hrsg.: Wilhelm und Else Heraeus-Stiftung, Helmholtz-Gemeinschaft Deutscher Forschungszentren. 2. Auflage. Hanau 2012, ISBN 978-3-89336-589-0.
    • Christian-Dietrich Schönwiese: Klimatologie. 4., überarbeitete und aktualisierte Auflage. UTB, Stuttgart 2013, ISBN 978-3-8252-3900-8.

    Klimageschichte

    • Elmar Buchner, Norbert Buchner: Klima und Kulturen. Die Geschichte von Paradies und Sintflut. Greiner Verlag, Remshalden 2005, ISBN 3-935383-84-3.
    • Karl-Heinz Ludwig: Eine kurze Geschichte des Klimas. Von der Entstehung der Erde bis heute. Verlag Ch. Beck, München 2006, ISBN 3-406-54746-X.
    • Wolfgang Behringer: Kulturgeschichte des Klimas. Von der Eiszeit bis zur globalen Erwärmung. Verlag C.H. Beck, München, ISBN 978-3-406-52866-8.
    • Tobias Krüger: Die Entdeckung der Eiszeiten – Internationale Rezeption und Konsequenzen für das Verständnis der Klimageschichte. Schwabe-Verlag, Basel, 2008, ISBN 978-3-7965-2439-4.
    • Heinz Wanner: Klima und Mensch. Eine 12.000-jährige Geschichte. Haupt Verlag, Bern 2016, ISBN 978-3-258-07879-3.

    Klimafaktor Mensch

    • Enzyklopädie der Natur. Die Geheimnisse der Natur entdecken, entschlüsseln, erklären. Orbis Verlag, 1992, ISBN 3-572-01284-8, S. 84/85.
    • Tim Flannery: Wir Wettermacher, Wie die Menschen das Klima verändern und was das für unser Leben auf der Erde bedeutet. Fischer Verlag, 2006, ISBN 3-10-021109-X.
    • Claudia Kemfert: Die andere Klima-Zukunft: Innovation statt Depression Murmann-Verlag, Hamburg 2008, ISBN 978-3-86774-047-0.

    Weblinks

    Wiktionary: Klima – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
    Commons: Klima – Sammlung von Bildern, Videos und Audiodateien
    Wikiquote: Klima – Zitate

    Einzelnachweise

    1. Hupfer, 1991
    2. a b c d Matthias Heymann: Klimakonstruktionen – Von der klassischen Klimatologie zur Klimaforschung. In: NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin. Band 17, Nr. 2, Mai 2009, S. 171–197, doi:10.1007/s00048-009-0336-3.
    3. Julian M . Allwood, Valentina Bosetti, Navroz K . Dubash, Luis Gómez-Echeverri, Christoph von Stechow (Hrsg.): IPCC, 2013/14: Anhang zu den Zusammenfassungen für politische Entscheidungsträger der Beiträge der Arbeitsgruppen I, II und III zum Fünften Sachstandsbericht des Zwischenstaatlichen Ausschusses für Klimaänderungen (IPCC). Deutsche Übersetzung durch Deutsche IPCC-Koordinierungsstelle. Bonn 2016 (de-ipcc.de [PDF; 1,3 MB]).
    4. Klima. In: Wetterlexikon. Deutscher Wetterdienst, abgerufen am 12. Mai 2019.
    5. Joachim Blüthgen: Allgemeine Klimageographie. Hrsg.: Wolfgang Weischet. Walter de Gruyter, 1980, ISBN 978-3-11-006561-9, S. 5.
    6. Manfred Hendl, Joachim Marcinek, Eckehart Jäger: Allgemeine Klima-, Hydro- und Vegetationsgeographie (= Studienbücherei / Geographie für Lehrer. Band 5). Haack, 1983, 1.1 Klimabegriff und Klimaelemente.
    7. Julius von Hann: Handbuch der Klimatologie (= Friedrich Ratzel [Hrsg.]: Bibliothek Geographischer Handbücher). Von J. Engelhorn, Stuttgart 1883, S. 1 (archive.org).
    8. Alexander von Humboldt: Kosmos: Entwurf einer physischen Weltbeschreibung, Band 1. 1845 (eingeschränkte Vorschau in der Google-Buchsuche).
    9. Latein-Wörterbuch. In: frag-caesar.de. Stefan Schulze-Steinmann, abgerufen am 10. Juli 2013 (vgl. auch Deklination und Inklination).
    10. Wiktionary: Klima.
    11. Stefan Rahmstorf, Jason E. Box, Georg Feulner, Michael E. Mann, Alexander Robinson, Scott Rutherford, Erik J. Schaffernicht: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. In: Nature Climate Change. 5. Jahrgang, März 2015, S. 475–480, doi:10.1038/nclimate2554 (englisch, unep.org [PDF]).
    12. Duo Chan, Qigang Wu: Significant anthropogenic-induced changes of climate classes since 1950. In: Nature Scientific Reports. 5. Jahrgang, August 2015, doi:10.1038/srep13487 (englisch).
    13. John W. Williams, Stephen T. Jackson, John E. Kutzbach: Projected distributions of novel and disappearing climates by 2100 AD. In: PNAS. 104. Jahrgang, Nr. 14, April 2015, S. 5738–5742, doi:10.1073/pnas.0606292104 (englisch, researchgate.net [PDF]).
    14. Steven J. Phillips, Michael M. Loranty, Pieter S. A. Beck, Theodoros Damoulas, Sarah J. Knight, Scott J. Goetz: Shifts in Arctic vegetation and associated feedbacks under climate change. In: Nature Climate Change. 3. Jahrgang, März 2013, S. 673–677, doi:10.1038/nclimate1858 (englisch, psu.edu [PDF]).
    15. IPCC Glossary of Synthesis Report (PDF; 256 kB) Intergovernmental Panel on Climate Change
    16. Susan Solomon, Gian-Kasper Plattner, Reto Knutti, Pierre Friedlingstein: Irreversible climate change due to carbon dioxide emissions. In: PNAS. 106. Jahrgang, Nr. 6, Februar 2009, S. 1704–1709, doi:10.1073/pnas.0812721106 (englisch).
    17. Richard E. Zeebe, Andy Ridgwell, James C. Zachos: Anthropogenic carbon release rate unprecedented during the past 66 million years. In: Nature Geoscience. 9. Jahrgang, Nr. 4, April 2016, S. 325–329, doi:10.1038/ngeo2681 (englisch, lta.org [PDF]).
    18. a b A. Berger, M. Cruci, D. A. Hodell, C. Mangili, J. F. McManus, B. Otto-Bliesner, K. Pol, D. Raynaud, L. C. Skinner, P. C. Tzedakis, E. W. Wolff, Q. Z. Yin, A. Abe-Ouchi, C. Barbante, V. Brovkin, I. Cacho, E. Capron, P. Ferretti, A. Ganopolski, J. O. Grimalt, B. Hönisch, K. Kawamura, A. Landais, V. Margari, B. Martrat, V. Masson-Delmotte, Z. Mokeddem, F. Parrenin, A. A. Prokopenko, H. Rashid, M. Schulz, N. Vazquez Riveiros (Past Interglacials Working Group of PAGES): Interglacials of the last 800,000 years. In: Reviews of Geophysics (AGU Publications). 54. Jahrgang, Nr. 1, März 2016, S. 162–219, doi:10.1002/2015RG000482 (englisch, cam.ac.uk [PDF]).
    19. James Hansen, Makiko Sato, Pushker Kharecha, David Beerling, Robert Berner, Valerie Masson-Delmotte, Mark Pagani, Maureen Raymo, Dana L. Royer, James C. Zachos: Target Atmospheric CO2: Where Should Humanity Aim? In: The Open Atmospheric Science Journal. Vol. 2, 2008, S. 217–231, doi:10.2174/1874282300802010217 (PDF)
    20. Richard K. Bambach: Phanerozoic biodiversity mass extinctions. In: Annual Review of Earth and Planetary Sciences. 34. Jahrgang, Mai 2006, S. 127–155, doi:10.1146/annurev.earth.33.092203.122654 (englisch).
    21. Robin M. Canup: Simulations of a late lunar-forming impact (PDF), Icarus, Vol. 168, 2004, S. 433–456.
    22. James F. Kasting, Shuhei Ono: Palaeoclimates: the first two billion years. In: The Royal Society Publishing, Philosophical Transactions B. Juni 2006, doi:10.1098/rstb.2006.1839 (englisch).
    23. David Beerling, Robert A. Berner, Fred T. Mackenzie, Michael B. Harfoot, John A. Pyle: Methane and the CH4-related greenhouse effect over the past 400 million years. In: American Journal of Science. 309. Jahrgang, Februar 2009, S. 97–113, doi:10.2475/02.2009.01 (englisch, hawaii.edu [PDF]).
    24. Michael J. Benton, Richard J. Twitchett: How to kill (almost) all life: the end-Permian extinction event. In: Trends in Ecology and Evolution. 18. Jahrgang, Nr. 7, Juli 2003, S. 358–365, doi:10.1016/S0169-5347(03)00093-4 (englisch, edu.ua [PDF]).
    25. Richard J. Twitchett: The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. In: Palaeogeography, Palaeoclimatology, Palaeoecology. 232. Jahrgang, Nr. 2–4, März 2006, S. 190–213, doi:10.1016/j.palaeo.2005.05.019 (englisch, uwc.ac.za [PDF]).
    26. David P. G. Bond, Paul B. Wignall: Large igneous provinces and mass extinctions: An update. In: The Geological Society of America (GSA) Special Paper. 505. Jahrgang, September 2014, S. 29–55, doi:10.1130/2014.2505(02) (englisch, researchgate.net [PDF]).
    27. Marco Spurk, Michael Friedrich, Jutta Hofmann, Sabine Remmele, Burkhard Frenzel, Hanns Hubert Leuschner, Bernd Kromer: Revisions and extension of the Hohenheim oak and pine chronologies: New evidence about the timing of the Younger Dryas/Preboreal transition. Inː Radiocarbon, 40, 1998, S. 1107–1116.
    28. A. Brauer: Weichselzeitliche Seesedimente des Holzmaares – Warvenchronologie des Hochglazials und Nachweis von Klimaschwankungen. In documenta naturae, München 1994, ISSN 0723-8428, S. 85.
    29. F. Wilhelms, H. Miller, M. D. Gerasimoff, C. Druecker, A. Frenzel, D. Fritzsche, H. Grobe, S. B. Hansen, S. A. E. Hilmarsson, G. Hoffmann, K. Hörnby, A. Jaeschke, S. S. Jakobsdottir, P. Juckschat, A. Karsten, L. Karsten, P. R. Kaufmann, T. Karlin, E. Kohlberg, G. Kleffel, A. Lambrecht, A. Lambrecht, G. Lawer, I. Schaermeli, J. Schmitt, S. G. Sheldon, M. Takata, M. Trenke, B. Twarloh, F. Valero-Delgado, D. Wilhelms-Dick: The EPICA Dronning Maud Land deep drilling operation. In: Annals of Glaciology. 55. Jahrgang, Nr. 68, 2014, S. 355–366, doi:10.3189/2014AoG68A189 (englisch, researchgate.net [PDF]).
    30. Oliver Wetter, Christian Pfister, Johannes P. Werner, Eduardo Zorita, Sebastian Wagner, Sonia I. Seneviratne, Jürgen Herget, Uwe Grünewald, Jürg Luterbacher, Maria-Joao Alcoforado, Mariano Barriendos, Ursula Bieber, Rudolf Brázdil, Karl H. Burmeister, Chantal Camenisch, Antonio Contino, Petr Dobrovolný, Rüdiger Glaser, Iso Himmelsbach, Andrea Kiss, Oldřich Kotyza, Thomas Labbé, Danuta Limanówka, Laurent Litzenburger, Øyvind Nordl, Kathleen Pribyl, Dag Retsö, Dirk Riemann, Christian Rohr, Werner Siegfried, Johan Söderberg, Jean-Laurent Spring: The year-long unprecedented European heat and drought of 1540 – a worst case. In: Climatic Change. 125. Jahrgang, Nr. 3–4, August 2014, S. 349–363, doi:10.1007/s10584-014-1184-2 (englisch, amazonaws.com [PDF]).
    31. Franz v. Cernyː Die Veränderlichkeit des Klimas und ihre Ursachen (PDF), A. Hartleben’s Verlag, Wien – Pest – Leipzig 1881.
    32. Dennis V. Kent, Paul E. Olsen, Cornelia Rasmussen, Christopher Lepre, Roland Mundil, Randall B. Irmis, George E. Gehrels, Dominique Giesler, John W. Geissman, William G. Parker: Empirical evidence for stability of the 405-kiloyear Jupiter–Venus eccentricity cycle over hundreds of millions of years. In: PNAS. 115. Jahrgang, Nr. 24, Juni 2018, doi:10.1073/pnas.1800891115 (englisch).
    33. A. Ganopolski, R. Winkelmann, H. J. Schellnhuber: Critical insolation–CO2 relation for diagnosing past and future glacial inception. In: Nature. 529. Jahrgang, Nr. 7585, Januar 2016, S. 200–203, doi:10.1038/nature16494 (englisch).
    34. Gary Shaffer, Matthew Huber, Roberto Rondanelli, Jens Olaf Pepke Pedersen: Deep time evidence for climate sensitivity increase with warming. In: Geophysical Research Letters. 43. Jahrgang, Nr. 12, Juni 2016, S. 6538–6545, doi:10.1002/2016GL069243 (englisch, uchile.cl [PDF]).
    35. D. L. Royer, M. Pagani, D. J. Beerling: Geobiological constraints on Earth system sensitivity to CO2 during the Cretaceous and Cenozoic. In: Geobiology. 10. Jahrgang, Nr. 4, Juli 2012, S. 298–310, doi:10.1111/j.1472-4669.2012.00320.x (englisch, wesleyan.edu [PDF]).
    36. IPCC AR5 WG1: Summary for policymakers. (ipcc.ch [PDF]).
    37. Kernaussagen des IPCC-Berichts zum 1,5-Grad-Ziel (deutsch, PDF), Deutsche IPCC-Koordinierungsstelle, Oktober 2018.
    38. Timothy M. Lenton, Hermann Held, Elmar Kriegler, Jim W. Hall, Wolfgang Lucht, Stefan Rahmstorf, Hans Joachim Schellnhuber: Tipping elements in the Earth's climate system. In: PNAS. 105. Jahrgang, Nr. 6, 2008, S. 1786–1793, doi:10.1073/pnas.0705414105 (englisch).
    39. Alexey Portnov, Andrew J. Smith, Jürgen Mienert, Georgy Cherkashov, Pavel Rekant, Peter Semenov, Pavel Serov, Boris Vanshtein: Offshore permafrost decay and massive seabed methane escape in water depths >20 m at the South Kara Sea shelf. In: Geophysikal Research Letters. 40. Jahrgang, Juli 2013, S. 3962–3967, doi:10.1002/grl.50735 (englisch).
    40. Terry P. Hughes, ames T. Kerry, Mariana Álvarez-Noriega, Jorge G. Álvarez-Romero, Kristen D. Anderson, Andrew H. Baird, Russell C. Babcock, Maria Beger, David R. Bellwood, Ray Berkelmans, Tom C. Bridge, Ian R. Butler, Maria Byrne, Neal E. Cantin, Steeve Comeau, Sean R. Connolly, Graeme S. Cumming, Steven J. Dalton, Guillermo Diaz-Pulido, C. Mark Eakin, Will F. Figueira, James P. Gilmour, Hugo B. Harrison, Scott F. Heron, Andrew S. Hoey, Jean-Paul A. Hobbs, Mia O. Hoogenboom, Emma V. Kennedy, Chao-yang Kuo, Janice M. Lough, Ryan J. Lowe, Gang Liu, Malcolm T. McCulloch, Hamish A. Malcolm, Michael J. McWilliam, John M. Pandolfi, Rachel J. Pears, Morgan S. Pratchett, Verena Schoepf, Tristan Simpson, William J. Skirving, Brigitte Sommer, Gergely Torda, David R. Wachenfeld, Bette L. Willis, Shaun K. Wilson: Global warming and recurrent mass bleaching of corals. In: Nature. 543. Jahrgang, März 2017, S. 373–377, doi:10.1038/nature21707 (englisch).
    41. Will Steffen, Johan Rockström, Katherine Richardson, Timothy M. Lenton, Carl Folke, Diana Liverman, Colin P. Summerhayes, Anthony D. Barnosky, Sarah E. Cornell, Michel Crucifix, Jonathan F. Donges, Ingo Fetzer, Steven J. Lade, Marten Scheffer, Ricarda Winkelmann, Hans Joachim Schellnhuber: Trajectories of the Earth System in the Anthropocene. In: PNAS. 115. Jahrgang, Nr. 33, August 2018, S. 8252–8259, doi:10.1073/pnas.1810141115 (englisch).
    42. David L. Kidder, Thomas R. Worsley: A human-induced hothouse climate? In: GSA Today (The Geological Society of America). 22. Jahrgang, Nr. 2, Februar 2012, S. 4–11, doi:10.1130/G131A.1 (englisch, uml.edu [PDF]).
    43. Sarah K. Carmichael, Johnny A. Waters, Cameron J. Batchelor, Drew M. Coleman, Thomas J. Suttner, Erika Kido, L. M. Moore, Leona Chadimová: Climate instability and tipping points in the Late Devonian: Detection of the Hangenberg Event in an open oceanic island arc in the Central Asian Orogenic Belt. In: Gondwana Research. 32. Jahrgang, April 2016, S. 213–231, doi:10.1016/j.gr.2015.02.009 (englisch, uncg.edu [PDF]).
    44. Thomas Stocker: Einführung in die Klimamodellierung. In: Physikalisches Institut, Universität Bern. (uni-bremen.de [PDF]).
    45. Frank Kaspar, Ulrich Cubasch: Das Klima am Ende einer Warmzeit. In: U. Cubasch (Hrsg.): Der belebte Planet II. Berlin 2007 (PDF).
    46. Sonnenschein: Langjährige Mittelwerte 1981–2010. www.dwd.de, abgerufen am 17. Mai 2019.
    47. Aurélie Duchez, Eleanor Frajka-Williams, Simon A Josey, Dafydd G Evans, Jeremy P Grist, Robert Marsh, Gerard D McCarthy, Bablu Sinha, David I Berry, Joël J-M Hirschi: Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. In: Environmental Research Letters. Band 11, Nr. 7, 1. Juli 2016, S. 074004, doi:10.1088/1748-9326/11/7/074004.
    48. tordach.org (Memento des Originals vom 7. Juli 2015 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.tordach.org