Geschichte der Physik

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Galileo Galilei: Oft als Begründer der Physik angesehen.

Die Geschichte der Physik als eigenständige Naturwissenschaft, wie wir sie heute kennen, begann im 16. Jahrhundert mit der Einführung der experimentellen Methode in die Erkenntnisfindung durch Galileo Galilei. Die Wurzeln der Physik reichen jedoch sehr viel weiter – nämlich bis in die Antike – zurück.

Von der frühen Neuzeit bis ins 19. Jahrhundert entwickelte sich die klassische Physik: Isaac Newton legte den Grundstein der Mechanik, die sich mit der Bewegung und Wechselwirkung von Körpern beschäftigt. James Clerk Maxwell fand mit der Elektrodynamik eine Theorie, die alle elektrischen und magnetischen Effekte in einheitlicher Weise beschreibt. Nach und nach gelang es, fast alle damals bekannten Phänomene auf diese beiden Grundlagen zurückzuführen. Insbesondere wurde Hitze (in der Thermodynamik) als ungeordnete Teilchenbewegung und Licht (in der Optik) als elektromagnetische Welle verstanden. Experimentelle Befunde, darauf aufbauende Theorien sowie Erkenntnisse aus der Chemie ließen die atomistische Struktur der Materie erkennen.

Ausgelöst durch die spezielle und die allgemeine Relativitätstheorie Albert Einsteins einerseits, sowie die Quantenphysik andererseits, kam es Anfang des 20. Jahrhunderts zu einem Paradigmenwechsel. Obwohl die so genannte moderne Physik zu einer grundlegend anderen Betrachtungsweise führte als die der klassischen Physik, so enthielt sie doch deren Erkenntnisse und erweiterte und vertiefte das Wissen sowohl im mikroskopisch Kleinen (Teilchen-, Kern- und Atomphysik) als auch im astronomisch Großen (Astrophysik und Kosmologie). Vor allem mit der Festkörperphysik und Laserphysik lieferte sie außerordentlich wichtige Beiträge zur technischen Anwendung. Ihre Theorien wie die Quantenfeldtheorie bilden bis heute die wesentlichen Grundlagen unseres Weltbildes.

Vorgeschichte der Physik[Bearbeiten]

Siehe auch: Naturphilosophie und Scholastik

Babylon[Bearbeiten]

Babylonier haben wie andere antike und vorgeschichtliche Völker erste astronomische Beobachtungen der Sonne, des Mondes, der Planeten und der Fixsterne durchgeführt. Mit diesen Erkenntnissen bestimmten sie die Zeitdauer eines Monats und eines Jahres und legten den Beginn der Jahreszeiten fest. Die genaue Beobachtung der Fixsterne erlaubte ihnen die Orientierung in unwegsamem Gelände. Durch langjährige Beobachtungen konnten sie auch Mondfinsternisse vorhersagen.

Antike[Bearbeiten]

Die griechische Naturphilosophie griff mesopotamische und ägyptische Kenntnisse auf und suchte nach grundlegenden Erklärungsprinzipien. Einzelne Sachverhaltsbeschreibungen wurden bereits mathematisiert. Eine experimentelle Methodik war jedoch noch nicht etabliert.

Die ionische materialistische Naturphilosophie eines Thales, Anaximander, Anaximenes, Heraklit erwarb Kenntnisse über Naturphänomene wie Ab- und Zunahme der Luftdichte, den Aufstieg warmer Luft, magnetische Anziehung und Bernsteinreibung.[1].

Empedokles begründete die lange Zeit maßgebliche Lehre von vier Elementen. Leukippos und Demokrit führten die von Epikur weiterverfolgte Atomhypothese ein: alles besteht aus kleinsten Teilchen, die selbst nicht teilbar oder intrinsisch wandelbar sind und deren Zusammensetzung den Wandel der Phänomene erklärt.

Im heutigen Gebiet der Optik entwickelten die griechischen Philosophen Pythagoras, Demokrit, Empedokles und andere mehrere Theorien des Lichts[2]. Euklid entwickelte sie nach dem von ihm entworfenen Ideal der Geometrie weiter und untersuchte insbesondere die Spiegelung mathematisch. Ptolemaios folgte ebenfalls diesem mathematischen Methodenideal und maß u. a. die Lichtbrechung durch Experimente. Heron von Alexandria versucht, das Reflexionsgesetz und die Lichtbrechung dadurch zu erklären, dass das Licht den kürzesten Weg zwischen zwei Punkten nimmt.

Bei den in der Legende von Pythagoras in der Schmiede beschriebenen Zahlenverhältnissen von Wohlklängen handelt es sich um das erste konkret und quantitativ beschriebene Naturgesetz, ohne dass jedoch klar ist, wie man zu diesem Gesetz gelangt ist.[3]

Platon nahm immaterielle Urbilder an und versuchte, damit Bewegung und Gravitation zu erklären. Im Timaios entwickelte er Ansätze einer Kosmologie. Nach der Ontologie des Aristoteles ist die Identität und der Wandel der Objekte durch das Arrangement zweier Grundprinzipien erklärbar, Form und Materie. Er nahm vier Ursachen an, unter welchen die Bewegungsursache nur eine ist (neben Ziel, Form und Materie). Seine Bewegungslehre ist eine Vorform der klassischen Dynamik. Auch sonst beschrieb er Naturphänomene eher materialistisch. Aristoteles hat diverse physikalische und sonstige naturwissenschaftliche Studien betrieben und Werke oder Vortragsnotizen u. a. über die Physik, den Himmel, das Wetter, Entstehen und Vergehen, Fragen der Mechanik zusammengestellt.

Mit seinem Werk Physik prägte Aristoteles den Begriff Physik; sein Werk beschreibt die Natur nicht im heutigen Sinne mathematisch.

Darüber hinaus bestand ein ausgeprägtes Anwendungsinteresse, das Erfinder wie Ktesibios, Philon von Byzanz oder Heron prägte, welche hydraulische, pneumatische und mechanische Phänomene nutzten.[4] Archimedes beschrieb um 250 v. Chr. den statischen Auftrieb und die Hebelgesetze. Er bestimmte den Schwerpunkt von Flächen und Körpern und mathematisierte nach dem Vorbild des Euklid Statik und Hydrostatik.

Ab dem 2. Jahrhundert bis Ende des 6. Jahrhunderts n. Chr. werden kaum noch neue Erkenntnisse gewonnen.

Mittelalter[Bearbeiten]

Diverse antike und frühmittelalterliche Kompendien überliefern die physikalischen Kenntnisse der antiken Wissenschaftler.

Im arabischen Kulturraum sind u. a. die Zusammenstellungen und Kommentierungen von Avicenna und Averroes wichtig, die auch für die im 12. und 13. Jahrhundert erfolgende Rezeption antiken Wissens im lateinischen Westen bedeutsam werden.

Insgesamt hat sich das bei Aristoteles stark ausgeprägte Interesse an einer Ausweitung physikalischer Einzelerkenntnisse und ihrer zusammenfassenden Systematisierung im lateinischen Westen über längere Zeit hin verloren. Stattdessen überwiegt ein Interesse an der Natur als Zeichen für den göttlichen Willen, wie dies schon die Bibelauslegung des Augustinus kennzeichnete.[5]

Ein Interesse an der Natur im Sinne empirischer Erklärungssuche wird Anfang des 12. Jahrhunderts rudimentär greifbar, etwa bei Adelard von Bath, der die Natur nicht mehr als „Buch“ göttlicher Zeichen versteht, sondern in seinen Quaestiones naturales biologische, physiologische, kosmologische und klimatologische Phänomene beschreibt und sich nicht auf Buchwissen, sondern Beobachtung, experimentum, stützt, ohne dies freilich methodologisch auszuarbeiten.[6]

Robert Grosseteste entwickelt im Anschluss an die platonische geometrische Weltbetrachtung eine Lichttheorie, welche die quantitative, qualitative, räumliche und substantielle Bewegung auf Lichtgesetze zu reduzieren versucht (De motu corporali et luce und De lineis). Damit wird die Optik (bei Robert scientia perspectiva) eine „Modellwissenschaft“[7] Auch Roger Bacon will alle Naturkausalität als Wirkung energetischer Strahlung erklären.[8] Witelo gibt der Optik einen ähnlich zentralen Rang in seiner Übertragung und Erklärung der Perspectiva von Ibn al-Haitam.[9] Die ähnlich angelegte Perspectiva communis Johannes Peckhams wird noch von Lorenzo Ghiberti und Leonardo da Vinci verwendet.[10]

Kurz vor Mitte des 14. Jahrhunderts arbeitet Nikolaus von Autrecourt eine scharfe Kritik am Wissenschaftsstatus metaphysischer Ansprüche auf Erkenntnis und Disziplinprimat aus. Parallel erfordert und ermöglicht die merkantile und technische Entwicklung des 14. Jahrhunderts eine Quantifizierung der Natur und eine Kritik der aristotelischen Bewegungslehre, d. h. allgemein der Verursachungslehre. Dem widmen sich etwa Franciscus de Marchie († 1320) und Johannes Buridan, der Begründer der sog. Impetustheorie[11], den Pierre Duhem einen „Vorläufer Galileis“ nennt.[12] Diese Theorie bleibt langezeit maßgeblich, bis sie durch die Trägheitstheorie abgelöst wird. Nikolaus von Oresme, Albert von Rickmersdorf und Marsilius von Inghen entwickeln sie weiter, nur in Oxford begegnet man ihnen mit Zurückhaltung (Thomas Bradwardine) oder Ablehnung (Richard Swineshead).[13] Die beiden letztgenannten gehören mit Johannes Dumbleton und William Heytesbury zu den sog. „Oxford Calculators“ am Merton College, die eine allgemeine Mathematisierung der Naturbeschreibung versuchen.

Nikolaus von Oresme nimmt auch sonst viele Anregungen Buridans auf und entwickelt sie z. B. unter Berufung auf das Prinzip der Denkökonomie zu der These weiter, dass die Annahme der Erdrotation ebenso durchführbar sei, wie die überkommene Vorstellung einer Rotation der Sonne um die Erde. Ebenso wird die aristotelische Zweiteilung der Physik in eine Welt über und unter dem Mond von ihm in Frage gestellt, die Relativität aller Bewegungszuschreibungen erkannt und ein Koordinatensystem eingeführt, das quantitativ genaue Beschreibungen qualitativer Veränderungen erlaubt.[14] Im Gefolge dieser Ansätze steht zu Anfang des 15. Jahrhunderts z. B. Biagio Pelacani da Parma,[15] zur Mitte des 15. Jahrhunderts beispielsweise Nikolaus von Kues, dessen Versuche mit der Waage quantitative Verfahren für die Medizin beschreiben und als exemplarisch für die Interessen der Frührenaissance gelten können.

Klassische Physik[Bearbeiten]

Siehe auch: Klassische Physik

16. und 17. Jahrhundert[Bearbeiten]

Unter den Naturforschern der Renaissance hat sich der wohl bekannteste unter ihnen, Leonardo da Vinci, vor allem aus praktischen Motiven als Maler und Ingenieur für Optik, Wasserbewegungen, Kraftübertragung und Vogelflug interessiert und dabei genaue Beobachtungen der Natur durchführt.

William Gilbert begründete mit seinen Experimenten die Lehre des Magnetismus und der Elektrostatik und konnte als erster zeigen, dass es sich dabei um verschiedene Phänomene handelte. Außerdem war er der erste, der die Gestalt des Erdmagnetfeldes richtig erkannte.

Die Überwindung von bisher vorherrschenden Vorstellungen begann in der Astronomie der Neuzeit mit Nikolaus Kopernikus (De revolutionibus orbium coelestium, 1543) und dem heliozentrischen Weltbild. Unterstützung fand dieses Modell, nachdem Johannes Kepler das Beobachtungsmaterial von Tycho Brahe ausgewertet hatte und insbesondere Galileo Galilei mit dem Fernrohr die beobachtende Astronomie revolutionierte.

In der Mechanik war René Descartes einer der Ersten, die sich von aristotelischen Vorstellungen abwandten und versuchten, Bewegungen von Körpern allein mit der Kraft des Verstandes zu ergründen und rational zu beschreiben. Im Gegensatz zu ihm vertrat Galilei jedoch eine Schule, die ihre Schlussfolgerungen nicht nur auf logisches Schließen, sondern vor allem auch auf reproduzierbare Beobachtungen und Experimente aufbaut. Erst dadurch entwickelte sich die Physik von der Naturphilosophie zu einer modernen Naturwissenschaft. Galilei erkannte, dass sich alle Körper auf der Erde nach denselben Gesetzen bewegen, die mathematisch formuliert und experimentell überprüft werden können. Zu seinen Entdeckungen gehört das Gesetz des freien Falls, das im Widerspruch zur Lehre des Aristoteles stand, ebenso wie eine Formulierung des Trägheitsgesetzes, die Wurfparabel und das Pendelgesetz. Galilei wirkte mit seiner Vorstellung der Physik als experimenteller Wissenschaft schulbildend, so in der Erforschung des Luftdrucks und der Natur des Vakuums (von Evangelista Torricelli über Blaise Pascal zu Otto von Guericke). Robert Boyle erforschte im 17. Jahrhundert die Gasgesetze und Christiaan Huygens baute schon von Galilei vorgeschlagene Pendeluhren, fand die Zentrifugalkraft und verwendete bei Betrachtung des elastischen Stoßes ein Relativitätsprinzip.

Isaac Newton

Die Grundlagen der klassischen Mechanik wurden 1688 im Wesentlichen von Isaac Newton in seinem Hauptwerk Philosophiae Naturalis Principia Mathematica begründet und formuliert (Newtonsche Gesetze). Hauptziel war zunächst die Erklärung der Keplerschen Gesetze der Himmelsmechanik aus einem universellen Gravitationsgesetz, das sowohl auf der Erde als auch für die Himmelskörper gilt. Eine experimentelle Bestätigung im Labor sowie eine Bestimmung der Gravitationskonstante gelang jedoch erst Henry Cavendish über 100 Jahre später. Newton wandte seine Gesetze der Mechanik aber auch schon zum Beispiel auf die Theorie der Flüssigkeiten an.

Newton nimmt insgesamt eine überragende Stellung in der Geschichte der Physik und in der Mathematisierung der Naturwissenschaften ein. Er leistete auch wichtige Beiträge zur Optik (Spiegelteleskop, Prisma) und vertrat im Gegensatz zu Christiaan Huygens (Wellenoptik) eine Korpuskulartheorie des Lichts.

18. Jahrhundert[Bearbeiten]

Die in der Formulierung der Mechanik benutzte, von Newton und unabhängig von Gottfried Wilhelm Leibniz erfundene Infinitesimalrechnung wurde ebenso wie die Mechanik insbesondere auf dem europäischen Kontinent ausgebaut, nachdem sich die britischen Mathematiker unter anderem in Folge des Prioritätsstreits zwischen Newton und Leibniz isoliert hatten. Differentialgleichungen bildeten danach die Grundlage für die Formulierung vieler Naturgesetze.

Mathematiker und Physiker wie Daniel Bernoulli, Jean-Baptiste le Rond d’Alembert, Leonhard Euler, Joseph-Louis Lagrange (Mécanique analytique 1788, Lagrange-Formalismus) und Pierre-Simon Laplace (dessen Werk als Höhepunkt der Entwicklung der Himmelsmechanik galt) entwickelten die Mechanik auf dem Kontinent wesentlich weiter unter anderem mit Verwendung von Variationsprinzipien (Prinzip der kleinsten Wirkung). Insbesondere Frankreich dominierte Ende des 18. Jahrhunderts auf dem Gebiet der theoretischen Physik, wobei die treibenden Kräfte vielfach noch in der theoretischen Astronomie (Himmelsmechanik) lagen und die Grenzen zwischen theoretischen Physikern und Mathematikern noch nicht so wie im späteren 20. Jahrhundert bestanden.

Das 18. Jahrhundert sah auch eine vielfältige Beschäftigung mit dem Phänomenen der Elektrizität. Spannungsgeneratoren (Elektrisiermaschinen) und Kondensatoren in Form Leidener Flaschen fanden weite Verbreitung in den physikalischen Kabinetten des Barocks. Reproduzierbare quantitative Ergebnisse ergaben sich nach Einführung der Batterie durch Alessandro Volta (um 1800). Gegen Ende des Jahrhunderts formulierte Charles-Augustin de Coulomb die Gesetze der Elektrostatik.

19. Jahrhundert[Bearbeiten]

Das 19. Jahrhundert ist insbesondere durch die Entwicklung der Gesetze der Thermodynamik und die Entwicklung des Feldkonzepts auf dem Gebiet der Elektrodynamik, gipfelnd in den Maxwellschen Gleichungen, gekennzeichnet.

Die Grundlagen der Thermodynamik wurden durch Sadi Carnot 1824 gelegt, der Kreisprozesse mit idealisierten Wärmekraftmaschinen betrachtete. Dabei wurde auch das Energiekonzept und das Konzept der Energieerhaltung herausgearbeitet, unter anderem in Arbeiten von Julius Robert von Mayer, den Experimenten von James Prescott Joule (experimentelle Messung des Wärmeäquivalents von Arbeit), durch Rudolf Clausius, von dem auch Entropie-Begriff und 2. Hauptsatz der Thermodynamik stammen, Lord Kelvin und Hermann von Helmholtz. Eine mikroskopische Interpretation der Thermodynamik als statistische Theorie von Ensembles, die Gesetzen der klassischen Mechanik gehorchen, erfuhr die Thermodynamik in der statistischen Mechanik, die insbesondere von James Clerk Maxwell, Josiah Willard Gibbs und Ludwig Boltzmann begründet wurde. Max Planck und Albert Einstein, die Anfang des 20. Jahrhunderts die moderne Physik wesentlich begründeten, waren noch als Spezialisten in der Thermodynamik und statistischen Mechanik ausgebildet und machten sich zunächst auf diesen Gebieten einen Namen.

Aus Betrachtungen zur Wärmeleitung gewann Joseph Fourier die für die theoretische Physik grundlegende Methode der Fourieranalyse. Fortschritte in der Kontinuumsmechanik wurden in der Formulierung der Navier-Stokes-Gleichungen als Erweiterung der Eulergleichungen idealer Flüssigkeiten erbracht sowie in den Untersuchungen zur Turbulenz durch Osborne Reynolds. Das 19. Jahrhundert brachte auch wesentliche Fortschritte auf dem Gebiet der Technischen Mechanik, der Elastizitätstheorie und der Akustik (Wellenphänomene wie der Doppler-Effekt nach Christian Doppler).

James Clerk Maxwell

Die Grundlagen der Elektrodynamik legten Hans Christian Ørsted (Zusammenhang von Elektrizität (Strom) und Magnetismus), André-Marie Ampère und Michael Faraday (Elektromagnetische Induktion, Feldkonzepte). Zusammengefasst und in einer einheitlichen Nahwirkungstheorie wurde die Elektrodynamik von James Clerk Maxwell beschrieben. Er lieferte damit auch eine elektromagnetische Theorie des Lichts (die Wellennatur des Lichts hatte sich schon Anfang des Jahrhunderts mit Thomas Young und Augustin Jean Fresnel durchgesetzt). Wesentliche Anteile an der Ausarbeitung hatten danach Oliver Heaviside und Heinrich Hertz, der als Erster elektromagnetische Wellen nachwies. Maxwell ging – wie auch die meisten anderen Physiker seiner Zeit – davon aus, dass sich die elektromagnetischen Wellen in einem Medium ausbreiten, das den gesamten Raum ausfüllt, dem Äther. Alle Versuche, diesen Äther experimentell nachzuweisen, insbesondere das Michelson-Morley-Experiment, schlugen jedoch fehl, weshalb die Äther-Hypothese später fallen gelassen werden musste.

Maxwell war einer der herausragenden Vertreter der theoretischen Physik, die im 19. Jahrhundert aus Großbritannien kamen und das Land im 19. Jahrhundert führend in der Physik machten. Zu ihnen gehörte auch William Rowan Hamilton, der eine später in der Quantenmechanik einflussreiche neue Formulierung von Mechanik und geometrischer Optik fand (Hamiltonsche Mechanik), Lord Kelvin und Lord Rayleigh (Theory of Sound). In Deutschland war Hermann von Helmholtz in Berlin die dominierende Persönlichkeit in der Physik mit Beiträgen auf den unterschiedlichsten Gebieten.

Insgesamt breitete sich gegen Ende des 19. Jahrhunderts die Vorstellung aus, die Physik wäre mehr oder weniger abgeschlossen, es gebe nichts Neues mehr zu entdecken. Im Nachhinein zeigten sich aber schon damals einige deutliche Hinweise, dass dem nicht so war. Die Erklärung der in der Spektralanalyse (Joseph von Fraunhofer, Gustav Robert Kirchhoff, Robert Bunsen) gefundenen Regelmäßigkeiten der Spektren und deren Beeinflussbarkeit durch Magnetfelder im Zeemaneffekt (ein Hinweis auf Elektronen in Atomen), Hinweise auf den atomaren Aufbau der Materie und sich daraus ergebende Regelmäßigkeiten in der Chemie (wobei es Ende des 19. Jahrhunderts auch einflussreiche Gegner des Atomismus gab), die Entdeckung des Elektrons und damit verbunden die Frage der Stabilität der Atome, die ungeklärte Frage der Herkunft der Sonnenenergie und die Entdeckung der Radioaktivität.

Verborgen in der Struktur der Maxwellgleichungen war auch die Relativitätstheorie, wie sich aus Untersuchungen der Elektrodynamik bewegter Körper von Hendrik Antoon Lorentz und Henri Poincaré andeutete und die Albert Einstein im folgenden Jahrhundert in voller Tragweite erkannte.

Moderne Physik[Bearbeiten]

Siehe auch: Moderne Physik

Das 20. Jahrhundert begann mit der Entdeckung der beiden grundlegenden Säulen der modernen Physik, der Quantentheorie durch Max Planck (1900) und der Relativitätstheorie durch Albert Einstein. Beide Theorien führten zu einer grundlegenden Umgestaltung der Physik.

Auf experimenteller Seite war einerseits die Entdeckung der Radioaktivität Ende des 19. Jahrhunderts (Henri Becquerel) und deren Erforschung Anfang des 20. Jahrhunderts durch Marie Curie von ausschlaggebender Bedeutung, gefolgt von der Entdeckung des Atomkerns durch Ernest Rutherford (Rutherford-Streuversuch). Als erstes Elementarteilchen war noch im 19. Jahrhundert das Elektron in Kathodenstrahlen entdeckt worden (J. J. Thomson). Ein wichtiger Fortschritt war auch die Untersuchung bisher nicht bekannter Teile des elektromagnetischen Spektrums mit der Entdeckung der Röntgenstrahlung durch Wilhelm Conrad Röntgen, mit großen Auswirkungen auf die Medizin und die mikroskopische Untersuchung von Festkörpern (Max von Laue, William Henry Bragg, William Lawrence Bragg).

Relativitätstheorie[Bearbeiten]

Albert Einstein

Die spezielle Relativitätstheorie (SRT) wurde nach Vorarbeiten von Hendrik Antoon Lorentz und Henri Poincaré durch Albert Einstein begründet. Er erkannte als erster ihre volle Tragweite. Durch die postulierte Gleichberechtigung aller Beobachter (Relativitätsprinzip) und durch die Invarianz der Lichtgeschwindigkeit, war es notwendig geworden, Raum und Zeit neu zu definieren. Beide Größen waren nach der SRT nicht mehr absolut, sondern von der Wahl des Bezugssystems abhängig. An die Stelle der Galilei-Transformation trat nun die Lorentz-Transformation.

Die ebenfalls von Einstein begründete allgemeine Relativitätstheorie (ART) dehnte die Erkenntnisse der SRT auf Nicht-Inertialsysteme aus. Demnach sind Gravitationswirkungen und Trägheitskräfte zueinander vollkommen äquivalent. Daraus folgte sowohl die Gleichheit von schwerer und träger Masse als auch die Krümmung der Raumzeit. Die noch in der klassischen Physik stillschweigend als zutreffend angesehene euklidische Geometrie des Raumes erwies sich nun als nicht mehr tragfähig. Die ART fand schon bald nach dem Ersten Weltkrieg Bestätigung in Beobachtungen (Lichtablenkung am Rand der Sonne bei Sonnenfinsternis, Arthur Eddington) und die darin formulierten Kosmologischen Modelle (Friedmann, Georges Lemaître) in der Entdeckung der Expansion des Universums (Edwin Hubble).

Quantentheorie[Bearbeiten]

Hauptartikel: Quantenphysik

Die Quantentheorie hat ihre Wurzeln in der Quantenhypothese, mit der es Max Planck gelang, das Spektrum der Wärmestrahlung des Schwarzen Körpers durch das Plancksches Strahlungsgesetz zu erklären: Planck nahm an, dass die Materie Strahlung nicht kontinuierlich, sondern in kleinen „Portionen“ – Quanten – absorbiert und emittiert. Albert Einstein schloss daraus auf den Teilchencharakter des Lichts (Photon) und erklärte damit den Photoeffekt, der schon im 19. Jahrhundert von Wilhelm Hallwachs entdeckt worden war. Der Teilchencharakter des Lichts stand in krassem Widerspruch zu der Wellentheorie des Lichts, die sich bisher ausgezeichnet bewährt hatte. Louis de Broglie ging später sogar noch einen Schritt weiter und postulierte, dass dieser Welle-Teilchen-Dualismus nicht nur eine Eigenschaft des Lichts sei, sondern ein Grundprinzip der Natur. Daher schrieb er auch der Materie einen Wellencharakter zu. Niels Bohr, Arnold Sommerfeld und andere entwickelten das halbklassische Bohrsche Atommodell mit quantisierten Energien, das eine erste plausible Erklärung für die Linienspektren der Atome gab. Die ältere Quantentheorie erwies sich bald insbesondere in der Erklärung komplexer Spektren als ungenügend. Um 1925 wurde durch Werner Heisenberg, Max Born (von dem die statistische Interpretation der Wellenfunktion stammt), Pascual Jordan und Wolfgang Pauli die Matrizenmechanik entwickelt. Hier wurden die Quantisierungserscheinungen durch die Nichtvertauschbarkeit der den grundlegenden Messgrößen wie Impuls und Ort zugeordneten Operatoren erklärt. Außerdem erkannte Heisenberg dass diese Größen nicht gleichzeitig exakt bestimmt sind und schätzte dies in seiner Unschärferelation ab. Erwin Schrödinger formulierte unabhängig davon mit der Schrödingergleichung die Grundlage der Wellenmechanik. Diese Gleichung ist eine Eigenwert-Gleichung: Die Eigenwerte des Hamilton-Operators sind die Energien der möglichen Zustände. Die Matrizen- und die Wellenmechanik erwiesen sich als zwei Aspekte derselben Theorie: Der eigentlichen Quantenmechanik. Bis Ende der 1920er Jahre war die Formulierung insbesondere durch Paul Dirac zu einem Abschluss gebracht worden und die neue Theorie erzielte große Erfolge durch Anwendung nicht nur in der Atomphysik, sondern auch bei Molekülen, Festkörpern und auf anderen Gebieten. Der Spin, eine fundamentale Eigenschaft aller Teilchen, die sich in der klassischen Physik nicht verstehen lässt, wurde entdeckt. Der grundlegende Unterschied von Bosonen (ganzzahliger Spin, Bose-Einstein-Statistik) einerseits und Fermionen (halbzahliger Spin, Fermi-Dirac-Statistik) andererseits wurde erkannt (siehe Spin-Statistik-Theorem von Wolfgang Pauli). Mit der Klein-Gordon-Gleichung und der Diracgleichung gelangen relativistische Formulierungen der Quantentheorie. Die daraus entwickelte Vorhersage von Antiteilchen konnte durch Carl D. Anderson bestätigt werden.

Die Grundlagen der Quantentheorie wurden in Schlüsselexperimenten wie im Franck-Hertz-Versuch (quantisierter inelastischer Stoß von Elektronen mit Atomen), im Millikan-Versuch (Quantisierung der Ladung), im Compton-Effekt (Streuung von Photonen an freien Ladungsträgern), im Stern-Gerlach-Versuch (Richtungsquantelung des Drehimpulses) und im Davisson-Germer-Experiment (Beugung von Materiewellen) bestätigt.

Noch mehr als die spezielle und die allgemeine Relativitätstheorie stellte die Quantenphysik einen Paradigmenwechsel in der Physik dar. Die Klassische Physik war streng deterministisch. Das bedeutet, dass gleiche Anfangsbedingungen unter identischen Umständen immer zu den gleichen Versuchsergebnissen führen. Dieser Determinismus war in der Quantenphysik nicht gegeben. Max Born führte die statistische Interpretation der Wellenfunktionen ein, ausgebaut in der Kopenhagener Deutung der Quantentheorie durch Bohr und Heisenberg 1928. Einstein lehnte diese Deutung vehement ab, blieb damit aber isoliert.

1930er Jahre, Anwendungen der Quantentheorie[Bearbeiten]

Die 1930er Jahre waren geprägt vom Ausbau der Kernphysik, die mit der Entwicklung der ersten Teilchenbeschleuniger (insbesondere das Zyklotron durch Ernest O. Lawrence) einen Aufschwung erhielt. Als weiterer grundlegender Elementarteilchen-Baustein neben dem Elektron und Proton kam das Neutron hinzu (James Chadwick) und bald darauf weitere Elementarteilchen, die zunächst vor allem durch natürliche Beschleuniger in Form der Kosmischen Höhenstrahlung untersucht wurden, wobei die wesentlichen neuen Entdeckungen erst nach dem Zweiten Weltkrieg ab der zweiten Hälfte der 1940er Jahre erzielt wurden (P. M. S. Blackett u. a.). Das Neutron war grundlegend für das Verständnis der Kerne und sein Zerfall führte zur Entdeckung der vierten fundamentalen Wechselwirkung (neben Gravitation, elektromagnetischer und der die Kerne zusammenhaltenden starken Wechselwirkung), der schwachen Wechselwirkung. Es wurden erste Kernmodelle entwickelt, so z. B. das Tröpfchenmodell von Carl Friedrich von Weizsäcker. Bis heute gibt es jedoch keine in sich geschlossene befriedigende Theorie des Atomkerns. Ende der 1930er Jahre wurde die Kernspaltung durch Otto Hahn entdeckt und durch Lise Meitner theoretisch gedeutet. Nachdem der Zweite Weltkrieg ausgebrochen war, starteten die USA das Manhattan-Projekt zur Entwicklung von Atombomben. An dem Projekt, das unter der wissenschaftlichen Leitung von J. Robert Oppenheimer stand, waren zahlreiche namhafte Physiker beteiligt. Die erste kontrollierte Kettenreaktion gelang Enrico Fermi 1942 und bildete die Grundlage für die friedliche Nutzung der Kernenergie.

Nach der Machtergreifung durch die Nationalsozialisten 1933 verlor Deutschland seine Vorreiterstellung in der Physik, die es im ersten Drittel des 20. Jahrhunderts innegehabt hatte. Zahlreiche Physiker verließen Deutschland und später Österreich, weil sie wegen ihrer jüdischen Abstammung oder ihrem politischem Engagement verfolgt wurden, darunter so namhafte Wissenschaftler wie Einstein, Schrödinger, Meitner und andere. In der so genannten „Deutschen Physik“ (vertreten durch z. B. Philipp Lenard, Johannes Stark, u. a.) wurden wichtige Erkenntnisse der Modernen Physik aus ideologischen Gründen abgelehnt. Wie nicht anders zu erwarten, stellte sich die „Deutsche Physik“ jedoch als wissenschaftliche Sackgasse heraus. Auch Deutschland unternahm im Zweiten Weltkrieg im Rahmen des Uranprojekts militärisch motivierte Forschungen zur Kernspaltung, jedoch war es bis Kriegsende noch weit vom Bau einer Atombombe entfernt.

In den 1930er Jahren wurde auch die Quantentheorie von Feldern entwickelt (Dirac, Jordan u. a.), mit dem grundlegenden Bild von Wechselwirkungen vermittelt durch den Austausch von Teilchen (Hideki Yukawa, Fermi).

Aufschwung der Physik nach dem Zweiten Weltkrieg[Bearbeiten]

Ende der 1940er Jahre entstanden durch Richard Feynman (der auch nach einer Idee von Dirac die Pfadintegral-Formulierung der Quantenmechanik begründete), Julian Schwinger, Freeman Dyson und andere konsistente Formulierungen von Quantentheorien von Feldern (Quantenfeldtheorie, Quantenelektrodynamik). Aus den Radarforschungen im Zweiten Weltkrieg kamen viele neue experimentelle Verfahren, insbesondere die Entwicklung des Masers (Mitte der 1950er Jahre) und daraus die des Lasers (um 1960), die nicht nur die Spektroskopie revolutionierten, und Methoden wie Kernspinresonanzspektroskopie. Die Festkörperphysik lieferte eine weitere Säule der technologischen Entwicklung in Form von Halbleitern und dem Transistor (John Bardeen, William B. Shockley). Auch lange unverstandene makroskopische Quantenphänomene wie die von Supraleiter (John Bardeen u. a.) und Supraflüssigkeit fanden mit hier auf die Vielteilchenphysik angewandten quantenfeldtheoretischen Methoden eine Erklärung. Die Festkörperphysik sorgte immer wieder für überraschende Entdeckungen (wie Hochtemperatursupraleiter und Quanten-Hall-Effekt in den 1980er Jahren), nicht nur mit großen technologischen Auswirkungen, sondern auch mit theoretischen Ansätzen, die auch die Elementarteilchenphysik und andere Gebiete der Physik befruchteten. Von besonderer Bedeutung war hier die Entwicklung der Theorie der Phasenübergänge und kritischen Phänomene (Lew Landau, Kenneth Wilson). Wilson arbeitete das einflussreiche Konzept der Renormierungsgruppe heraus, die zum Beispiel bei der Theorie von Phasenübergängen und in der Elementarteilchenphysik und Quantenfeldtheorie Anwendung findet.

Entwicklung des Standardmodells[Bearbeiten]

Die Entwicklung der Teilchenbeschleuniger nach dem Krieg führte zur Entdeckung eines ganzen Elementarteilchen-Zoos, in den die Theoretiker besonders ab den 1960er Jahren Ordnung brachten. Dabei erwiesen sich Symmetrien und deren quantenfeldtheoretische Formulierung als Eichtheorien von besonderer Bedeutung. Eichtheorien wurden ursprünglich von Hermann Weyl als Erweiterungen der Allgemeinen Relativitätstheorie eingeführt und erwiesen sich insbesondere in Form von Yang-Mills-Theorien als grundlegend für das sich nun herausbildende Standardmodell der Elementarteilchen und fundamentalen Wechselwirkungen. Von großer Bedeutung war die Entdeckung der Verletzung einer grundlegenden Symmetrie in der schwachen Wechselwirkung, der Paritätsverletzung (1956, postuliert von Yang, Lee und bestätigt im Wu-Experiment). Wesentliche Beiträge leistete Murray Gell-Mann bei der starken Wechselwirkung, speziell durch die Einführung punktförmiger Konstituenten (Quarks), aus denen Mesonen und Baryonen aufgebaut sind und die Ende der 1960er Jahre in Hochenergieexperimenten beobachtet wurden. Ab den 1970er Jahren schälte sich eine spezielle Yang-Mills-Theorie, die Quantenchromodynamik als Theorie der starken Wechselwirkung und ein Baustein des Standardmodells heraus, gefolgt von einer Vereinigung der elektrischen und schwachen Wechselwirkung (Steven Weinberg, Abdus Salam, Sheldon Glashow, 1960er Jahre). Die Entwicklung der großen Beschleuniger, die exemplarisch für Big Science stehen, bei denen tausende Wissenschaftler an den Experimenten nichts ungewöhnliches sind, bestätigte Stück für Stück dieses Modell bis hin zur Entdeckung des letzten Quarks (Top Quark) in den 1990er Jahren und des Higgs-Teilchens Anfang der 2010er Jahre.

Die theoretische Elementarteilchenphysik wurde in den Jahren nach Abschluss des Standardmodells (Ende der 1970er Jahre) von der Stringtheorie beherrscht, die die Phänomenologie des Standardmodells durch die Betrachtung ausgedehnter (fadenförmiger) statt punktförmiger Elementarteilchen zu erklären versucht und die Lösung eines weiteren großen ungelösten Problems der Physik, der Vereinigung von Gravitation und Quantentheorie, zum Ziel hat. Allerdings leidet die Theorie an dem großen Abstand der Planck-Skala der Beschreibung der Theorie und experimentell zugänglichen Dimensionen. Die Theorie war dagegen sehr fruchtbar für einen neuen gegenseitigen Austausch von Mathematik und Physik.

Weitere Entwicklungen[Bearbeiten]

Die durch die Miniaturisierung elektronischer Schaltungen möglich gemachte Entwicklung des Computers und der Elektronik machte nicht nur die Entwicklung der Teilchenbeschleunigerexperimente, die das Standardmodell bestätigten, möglich, sondern revolutionierte auch die Theoretische Physik. Zu den vor allem durch die Computerentwicklung ermöglichten neuen Zweigen gehört auch die Chaostheorie, die in den 1970er Jahren zu einem Paradigmenwechsel auch in Gebieten wie der klassischen Mechanik führte, die bis dahin als weitgehend abgeschlossen galten. Mit dem Computer erschlossen sich ganz neue Fragestellungen und Verbesserungen der Vorhersagemöglichkeiten von vielen Modellen. Die Miniaturisierung von Schaltkreisen wurde später bis in den Quantenbereich fortgetrieben und es entstanden neue Forschungsfelder wie Mesoskopische Physik und Quanteninformationstheorie.

Im großen Maßstab der Kosmologie und Astrophysik (Quasare und aktive Galaxien, Neutronensterne und Pulsare, Schwarze Löcher) wurden in der zweiten Hälfte des 20. Jahrhunderts ebenfalls sowohl theoretisch als auch auf dem Gebiet der Beobachtungen (Astronomie in den unterschiedlichsten Wellenlängen) große Fortschritte erzielt. Schwarze Löcher wandelten sich von einer exotischen Möglichkeit zu einem etablierten Erklärungsmodell und die Kosmologie wurde insbesondere mit der Entdeckung der 3-K-Hintergrundstrahlung zu einer quantitativen Wissenschaft. Es stellten sich auch vielfältige Verbindungen von der Physik im ganz Kleinen (Elementarteilchen) zur Astrophysik und Kosmologie heraus (Astroteilchenphysik), zum Beispiel bei der Erklärung des Problems solarer Neutrinos. Das Inflationäre Modell wurde zu einem der Bausteine der modernen Naturerklärung, wobei sich Ende des 20. Jahrhunderts in Form der Entdeckung Dunkler Materie und der beschleunigten Expansion des Universums neue grundlegende ungelöste Probleme ergaben.

Siehe auch[Bearbeiten]

Literatur[Bearbeiten]

Bibliographien[Bearbeiten]

  • Roderick W. Home: The history of classical physics. A selected, annotated bibliography. Garland, New York 1984, ISBN 0-8240-9067-5.
  • Stephen G. Brush, Lanfranco Belloni: The history of modern physics. An international bibliography. Garland, New York 1983, ISBN 0-8240-9117-5.

Überblicksdarstellungen und Handbücher[Bearbeiten]

Lexika[Bearbeiten]

Spezielle Themen[Bearbeiten]

Mechanik
  • René Dugas: A history of mechanics, Routledge and Kegan 1955
  • Istvan Szabo Geschichte der mechanischen Prinzipien, Birkhäuser 1987
  • Eduard Jan Dijksterhuis Die Mechanisierung des Weltbildes, Springer, Berlin/Heidelberg/New York, 1956, Reprint 1983
  • Ernst Mach Die Mechanik und ihre Entwicklung, Brockhaus 1897
  • Verschiedene Bücher von Max Jammer wie The concept of force
Thermodynamik, Kinetische Gastheorie
  • Stephen G. Brush: The Kind of Motion We Call Heat – A History of the Kinetic Theory of Gases in the 19th Century. North Holland 1976, 2 Bände
Elektrodynamik
  • Edmund T. Whittaker: History of the theories of ether and electricity, 2 Bände, Dover 1989 (zuerst 1910)
  • Olivier Darrigol: Electrodynamics from Ampère to Einstein, Oxford University Press 2003
  • John Heilbron: Electricity in the 17th and 18th Century: Study of Early Modern Physics, University of California Press 1979, Dover 1999
Quantentheorie
Quantenfeldtheorie, Elementarteilchenphysik
  • Abraham Pais Inward Bound. Of Matter and Forces in the Physical World. Clarendon Press, Oxford, 1986
  • Silvan S. Schweber QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga, Princeton: Princeton University Press 1994.
Mittelalter
  • A. C. Crombie: Augustine to Galileo: The History of Science A.D. 400 - 1650, Penguin 1969, ISBN 0-14-055074-7.
  • S. Donati, Andreas Speer: Physik und Naturphilosophie. In: Lexikon des Mittelalters. Bd. 6, J. B. Metzler, 2000, S. 2111–2117.
  • Edward Grant: Physical Science in the Middle Ages. Wiley History of Science Series, John Wiley, New York/ London 1971.
  • Edward Grant: The Foundations of Modern Science in the Middle Ages. Their Religious, Institutional and Intellectual Contexts. Cambridge University Press, Cambridge 1996, ISBN 0-521-56762-9.
  • Edward Grant (Hrsg.): A Sourcebook in Medieval Science. Harvard University Press, Cambridge 1974, ISBN 0-674-82360-5.
  • Toby E. Huff: The Rise of Early Modern Science. Islam, China, and the West. Cambridge University Press, 2003, ISBN 0-521-52994-8.
  • David C. Lindberg: The Beginnings of Western Science. University of Chicago Press, Chicago 1992, ISBN 0-226-48230-8.
  • David C. Lindberg (Hrsg.): Science in the Middle Ages. University of Chicago Press, Chicago 1976, ISBN 0-226-48233-2.
  • M. H. Shank (Hrsg.): The Scientific Enterprise in Antiquity and the Middle Ages. University of Chicago Press, 2000, ISBN 0-226-74951-7.
  • J. Thijssen: Die Stellung der scholastischen Naturphilosophie in der Geschichte der Physik. Herbst des Mittelalters oder Frühling der Neuzeit? In: Jan A. Aertsen, Martin Pickavé (Hrsg.): Herbst des Mittelalters? Fragen zur Bewertung des 14. und 15. Jahrhunderts. De Gruyter, 2004, S. 512ff.
Ältere Darstellungen

Ernst Gerland, Edmund Hoppe, Johann Christian Poggendorff, August Heller, Ferdinand Rosenberger, Emil Wilde (Optik), Carl Ramsauer (Experimente)

Einzelnachweise[Bearbeiten]

  1. Schreier 1990, 451
  2.  Eugene Hecht: Optik. 4 Auflage. Oldenbourg, München, Wien 2005, ISBN 3-486-27359-0, S. 1.
  3. Károly Simonyi: Kulturgeschichte der Physik, Kapitel „Mystik und Mathematik: Pythagoras“. Verlag Harri Deutsch, Thun/Frankfurt am Main 1990, S. 61–66
  4. Schreier, l.c.
  5. Vgl. De Genesi ad litteram, De civitate Dei 21, 8; Donati/Speer.
  6. Donati/Speer mit Verweis auf Quaest. nat. 6 und 22
  7. Donati/Speer
  8. Opus maius, Teil 4, nach Donati/Speer
  9. Donati/Speer
  10. Donati/Speer
  11. Enrico Giannetto: The impetus theory: Between history of physics and science education. In: Science & Education. 2/3 (1993), S. 227–238.
  12. Hier nach Flasch, l.c., 543
  13. Donati/Speer
  14. Vgl. Flasch, 545
  15. Vgl. Flasch, 569–572

Weblinks[Bearbeiten]

 Wikisource: Physik – Quellen und Volltexte
Überblicksdarstellungen
Mittelalter
Neuzeit
Spezielle Themen