Benutzer:Peter in s/Formelsamlung

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die Formelsammlung zur euklidischen Geometrie ist ein Teil der Formelsammlung, in der auch Formeln der anderen Fachbereiche zu finden sind.

Bezeichner und Schreibweisen[Bearbeiten | Quelltext bearbeiten]

In den allermeisten Fällen gilt:

  1. Punkte werden mit lateinischen Großbuchstaben beschriftet.
  2. Linien wie Geraden, Strecken und Bögen werden mit lateinischen Kleinbuchstaben beschriftet.
  3. Winkel werden mit griechischen Kleinbuchstaben beschriftet.

Im Folgenden werden Winkel im Gradmaß angegeben.

Geometrie in der Ebene[Bearbeiten | Quelltext bearbeiten]

Grundlagen[Bearbeiten | Quelltext bearbeiten]

Winkel[Bearbeiten | Quelltext bearbeiten]

Nebenwinkel

Die Summe von Nebenwinkeln beträgt immer 180°.
α + β = 180°

Scheitelwinkel

Scheitelwinkel sind immer gleich groß.
α = β

Stufenwinkel

Stufenwinkel an geschnittenen Parallelen sind immer gleich groß.

Wechselwinkel

Wechselwinkel an geschnittenen Parallelen sind immer gleich groß.

Außenwinkel

Im Dreieck ist ein Außenwinkel gleich der Summe der beiden nichtanliegenden Innenwinkel.

Winkelsummen

Die Summe der Innenwinkel in einem Dreieck ist immer 180°
Die Summe der Innenwinkel in einem -Eck ist immer
Die Summe der Außenwinkel beträgt in einem konvexen -Eck stets 360° (unabhängig von der Eckenzahl )

Teilung einer Strecke[Bearbeiten | Quelltext bearbeiten]

Verhältnisteilung: Um eine Strecke in einem bestimmten Verhältnis (in gleiche Teile) zu teilen, zeichnet man zunächst einen beliebigen Strahl von aus, der nicht parallel zu ist. Auf diesem trage man mal eine beliebig lange Strecke ab. Den erhaltenen Endpunkt verbinde man mit und zeichne die Parallelen zu durch die bei der Unterteilung von entstandenen Punkte. Deren Schnittpunkte mit teilen in gleiche Teile.

Flächen und Umfänge[Bearbeiten | Quelltext bearbeiten]

Ein Dreieck mit Standardbezeichnung

Die Standardbezeichnung für Dreiecke:

Eckpunkte
und . Die Ecke ist beim gleichschenkligen Dreieck der Treffpunkt der gleichen Seiten und beim rechtwinkligen Dreieck der Scheitel des rechten Winkels.
Seiten
ist die der Ecke gegenüberliegende Seite, entsprechendes gilt für und . Beim gleichseitigen Dreieck werden alle Seiten mit bezeichnet.
Winkel
ist der (Innen-)Winkel in Ecke , der Winkel in Ecke und der Winkel in Ecke .
Figur Flächeninhalt A Umfang U Bemerkung, Weiteres
Dreieck
Allgemeines Dreieck



Letztere Flächenformel wird als Satz des Heron bezeichnet.
ist der halbe Umfang, der Umkreisradius und der Inkreisradius.
Gleichseitiges Dreieck Alle Seiten sind gleich lang.
Alle Winkel sind gleich groß (60°).
Höhenlinien = Symmetrieachsen = Winkelhalbierende = Seitenhalbierende= Mittennormale
Gleichschenkliges Dreieck Zwei Seiten sind gleich lang (Schenkel und ); die dritte Seite heißt Basis
Die beiden Basiswinkel ( und ) sind gleich groß.
Die Höhenlinie durch halbiert den Winkel
und die Basis .
Rechtwinkliges Dreieck .
Hypotenuse = längste Seite = Seite gegenüber dem 90°-Winkel.
Katheten = Seiten, die den rechten Winkel bilden.
Es gilt die Satzgruppe des Pythagoras (s.u.)
Viereck
Quadrat Diagonale
Rechteck Diagonale
Raute (Rhombus) = Diagonalen, = Schnittwinkel der Diagonalen.
Parallelogramm ist die Höhe zur Seite a.
Trapez = parallele Seiten, = Mittellinie
symmetrischer Drachen (Deltoid) = Diagonalen.
Sehnenviereck

Viereck mit Umkreis, Umkreisradius ,
halber Umfang; Diagonalen: ,
Tangentenviereck Viereck mit Inkreis mit Inkreisradius .
Es gilt
Polygone
Regelmäßiges Polygon







  • – Anzahl der Ecken
  • – Radius des Umkreises, d. h. Entfernung vom Mittelpunkt zu einer Ecke
  • – Radius des Inkreises, d. h. Entfernung vom Mittelpunkt zu einer Seitenmitte
  • – Kantenlänge einer Seite des Polygons
Kreis
Kreis
Es bezeichnet die Kreiszahl.
Kreisring = Außenradius, = Innenradius
Kreisausschnitt

b = (Winkel im Bogenmaß)
Kreisabschnitt (Segment)
(Winkel im Bogenmaß)
Kegelschnitte
Ellipse

Menge der Punkte, für die die Summe der beiden Abstände zu zwei gegebenen Punkten (Brennpunkten) konstant () ist. Der Umfang lässt sich nicht mit elementaren Funktionen angeben (→ Elliptisches Integral). D,d großer und kleiner Durchmesser. Kartesische Koordinaten:
Hyperbel Keine geschlossene Fläche Keine geschlossene Kurve Menge aller Punkte, für die die absolute Differenz der Abstände zu den Brennpunkten konstant 2a ist. Kartesische Koordinaten:
Parabel Keine geschlossene Fläche Keine geschlossene Kurve Menge aller Punkte, deren Abstand zu einem speziellen festen Punkt (dem Brennpunkt) und einer speziellen Geraden (der Leitgeraden l) konstant ist. Kartesische Koordinaten: .

Dreiecksgeometrie[Bearbeiten | Quelltext bearbeiten]

Ausgezeichnete Punkte[Bearbeiten | Quelltext bearbeiten]

Seitenhalbierende und Schwerpunkt
  • Seitenhalbierende (Schwerlinien)
    • teilen einander im Verhältnis 2:1.
    • schneiden sich in einem Punkt, dem Schwerpunkt S des Dreiecks.
    • teilen die Dreiecksfläche in je zwei gleich große Teilflächen.
Winkelhalbierende und Inkreis
Höhen

Satzgruppe des Pythagoras[Bearbeiten | Quelltext bearbeiten]

  • Satz des Pythagoras
    Im rechtwinkligen Dreieck ist die Fläche des Quadrats über der Hypotenuse gleich der Summe der Flächen der Quadrate über den Katheten:
  • Kathetensatz
    Im rechtwinkligen Dreieck ist das Quadrat über einer Kathete flächengleich dem Rechteck aus der Hypotenuse und der Projektion dieser Kathete auf die Hypotenuse (für diese Formel zur unteren Skizze ist a links oben und b rechts oben):
  • Höhensatz
    Im rechtwinkligen Dreieck ist das Quadrat über der Höhe auf der Hypotenuse flächengleich mit dem Rechteck aus den Hypotenusenabschnitten.

Dreiecksungleichung[Bearbeiten | Quelltext bearbeiten]

Die Summe zweier Seiten eines Dreiecks ist stets größer als die dritte Seite.

Kongruenz- und Ähnlichkeitssätze[Bearbeiten | Quelltext bearbeiten]

Zwei Dreiecke sind kongruent bzw. deckungsgleich, wenn sie übereinstimmen in

  1. drei Seiten z. B. a, b, c = n (sss)
  2. zwei Seiten und dem eingeschlossenen Winkel (sws)
  3. zwei Seiten und dem Gegenwinkel der längeren Seite (Ssw)
  4. einer Seite und den beiden anliegenden Winkeln (wsw)

Zwei Dreiecke sind ähnlich, wenn

  1. drei Paare entsprechender Seiten das gleiche Verhältnis haben
  2. zwei Paare entsprechender Seiten das gleiche Verhältnis haben und die von diesen Seiten eingeschlossenen Winkel übereinstimmen
  3. zwei Paare entsprechender Seiten dasselbe Verhältnis haben und die Gegenwinkel der längeren Seiten übereinstimmen
  4. zwei Winkel übereinstimmen

Strahlensätze[Bearbeiten | Quelltext bearbeiten]

  1. Strahlensatz: Wird ein Zweistrahl durch zwei parallele Geraden geschnitten, so stehen die Strahlenabschnitte des ersten Strahles im gleichen Verhältnis wie die entsprechenden Abschnitte des zweiten Strahles.
  2. Strahlensatz: Wird ein Zweistrahl durch zwei parallele Geraden geschnitten, so stehen die Parallelabschnitte im gleichen Verhältnis, wie die vom Scheitelpunkt aus gemessenen zugehörigen Strahlenabschnitte.

Geometrie der Körper[Bearbeiten | Quelltext bearbeiten]

Körper Volumen V Oberfläche O Bemerkungen, Weiteres
Prismen
Parallelepiped (Spat)
Quader
Raumdiagonalenlänge
Allgemeines
Prisma
Mantelfläche
Säulen
Rundsäule (Zylinder)
Hohlzylinder

Außen-,Innenradius

Pyramide
Allgemeine
Pyramide
Pyramidenstumpf Grundfläche
Deckfläche
Kegel
Kreiskegel nur für senkrechte Kegel:
Zusammenhang von Radius, Höhe und Seitenhöhe:
gerader Kegelstumpf


Radien
Platonische Körper
Tetraeder
Hexaeder (Würfel) Raumdiagonalenlänge
Oktaeder
Dodekaeder
Ikosaeder
Kugel und Kugelteile
Kugel
Kugelkalotte (Kugelmütze, Kugelkappe)
Kugelsegment (Kugelabschnitt) mit
Kugelzone
(Kugelschicht)
mit = Durchmesser des unteren Schnittkreises und = Durchmesser des oberen Schnittkreises
Drehkörper
Ellipsoid Halbachsen a,b,c
Torus

siehe auch: Eulerscher Polyedersatz, Prinzip von Cavalieri

Trigonometrie[Bearbeiten | Quelltext bearbeiten]

siehe: Trigonometrie, Formelsammlung Trigonometrie

Analytische Geometrie[Bearbeiten | Quelltext bearbeiten]

siehe Analytische Geometrie, Formelsammlung Analytische Geometrie

Einheiten[Bearbeiten | Quelltext bearbeiten]

SI-Einheiten[Bearbeiten | Quelltext bearbeiten]

Basisgröße und
Dimensionsname
Größen-
symbol
Dimensions-
symbol
Einheit Einheiten-
zeichen
Definition der Einheit
Länge l L Meter m Länge der Strecke, die das Licht im Vakuum während der Dauer von 1 / 299 792 458 Sekunde zurücklegt.
Masse m M Kilogramm kg Das Kilogramm ist gleich der Masse des Internationalen Kilogrammprototyps.
Zeit t T Sekunde s Das 9 192 631 770-fache der Periodendauer der dem Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes von Atomen des Caesium-Isotops 133Cs entsprechenden Strahlung.
Stromstärke I I Ampere A Stärke eines konstanten elektrischen Stromes, der, durch zwei parallele, geradlinige, unendlich lange und im Vakuum im Abstand von 1 Meter voneinander angeordnete Leiter von vernachlässigbar kleinem, kreisförmigem Querschnitt fließend, zwischen diesen Leitern pro Meter Leiterlänge die Kraft 2·10−7 Newton hervorrufen würde.[B 1]
Thermodynamische
Temperatur
T Θ Kelvin K 1 / 273,16 der thermodynamischen Temperatur des Tripelpunkts von Wasser genau definierter isotopischer Zusammensetzung.[B 2]
Stoffmenge
(Substanzmenge)
n N Mol mol Die Stoffmenge eines Systems, das aus ebenso vielen Einzelteilchen besteht, wie Atome in 12 Gramm des Kohlenstoff-Isotops 12C in ungebundenem Zustand enthalten sind. Bei Benutzung des Mol müssen die Einzelteilchen spezifiziert sein und können Atome, Moleküle, Ionen, Elektronen sowie andere Teilchen oder Gruppen solcher Teilchen genau angegebener Zusammensetzung sein.
Lichtstärke IV J Candela cd Die Lichtstärke in einer bestimmten Richtung einer Strahlungsquelle, die monochromatische Strahlung der Frequenz 540·1012 Hz[B 3] aussendet und deren Strahlstärke in dieser Richtung 1 / 683 Watt pro Steradiant beträgt.
  1. Gleichbedeutend ist, dass die magnetische Konstante μ0 exakt 4π·10−7 H/m beträgt.
  2. Vienna Standard Mean Ocean Water (VSMOW). Die Beschreibung des Normals erfolgt durch die Internationale Temperaturskala aus dem Jahr 1990 (ITS-90).
  3. Wellenlänge: ca. 555 nm

Man kann erkennen, dass nur die drei Basiseinheiten Kilogramm, Sekunde und Kelvin unabhängig von anderen Basiseinheiten definiert sind, während die Definitionen der übrigen vier Basiseinheiten Abhängigkeiten von anderen Basiseinheiten aufweisen:

  • Meter von Sekunde
  • Mol von Kilogramm
  • Ampere sowie Candela von Meter, Kilogramm und Sekunde

Des Weiteren fällt auf, dass nur die Einheit Kilogramm anhand eines Prototyps definiert wird. Alle anderen Einheiten werden über unveränderliche Naturkonstanten festgelegt, was aber nicht schon immer der Fall war. So gab es bis 1960 beispielsweise ein Urmeter als Prototyp für die Einheit Meter. Da sich die Masse des Urkilogramms aber theoretisch ändern könnte (und dies wahrscheinlich sogar tut[1]) arbeitet man daran, auch die Einheit Kilogramm eindeutig zu definieren (siehe auch Neudefinition des Kilogramms).

Abgeleitete SI-Einheiten mit besonderem Namen[Bearbeiten | Quelltext bearbeiten]

22 kohärenten abgeleiteten SI-Einheiten wurden eigene Namen und Einheitenzeichen (Symbole) zugeordnet, die selbst wieder mit allen Basis- und abgeleiteten Einheiten kombiniert werden können. So eignet sich zum Beispiel die SI-Einheit der Kraft, das Newton (= kg·m/s2), um die Einheit der Energie, das Joule als Newton mal Meter (N·m) auszudrücken. Die folgende Tabelle listet diese 22 Einheiten in derselben Reihenfolge wie Tabelle 3 der SI-Broschüre (8. Auflage).

Größe Einheit Einheiten-
zeichen
in anderen SI-Einheiten
ausgedrückt
in SI-Basiseinheiten
ausgedrückt[N 1]
ebener Winkel Radiant[N 2] rad m/m 1
Raumwinkel Steradiant[N 3] sr m2/m2 1
Frequenz Hertz Hz s−1
Kraft Newton N J/m m·kg·s−2
Druck Pascal[N 4] Pa N/m2 m−1·kg·s−2
Energie, Arbeit, Wärmemenge Joule J N·m; Ws m2·kg·s−2
Leistung Watt W J/s; VA m2·kg·s−3
elektrische Ladung Coulomb C A·s
elektrische Spannung
(elektrische Potentialdifferenz)
Volt V W/A; J/C m2·kg·s−3·A−1
elektrische Kapazität Farad F C/V m−2·kg−1·s4·A2
elektrischer Widerstand Ohm Ω V/A m2·kg·s−3·A−2
elektrischer Leitwert Siemens S 1/Ω m−2·kg−1·s3·A2
magnetischer Fluss Weber Wb V·s m2·kg·s−2·A−1
magnetische Flussdichte,
Induktion
Tesla T Wb/m2 kg·s−2·A−1
Induktivität Henry H Wb/A m2·kg·s−2·A−2
Celsius-Temperatur Grad Celsius[N 5] °C K
Lichtstrom Lumen lm cd·sr cd
Beleuchtungsstärke Lux lx lm/m2 m−2·cd
Radioaktivität Becquerel Bq s−1
Energiedosis Gray Gy J/kg m2·s−2
Äquivalentdosis Sievert Sv J/kg m2·s−2
katalytische Aktivität Katal kat s−1·mol
  1. In der Reihenfolge der offiziellen Basiseinheiten-Definitionen (m, kg, s, A, K, mol, cd).
  2. Radiant (rad) und Steradiant (sr) kann alternativ statt der Einheit 1 für den ebenen Winkel oder für den Raumwinkel verwendet werden, um die Bedeutung des dazugehörigen Zahlenwertes hervorzuheben. Diese beiden Einheiten wurden 1995 (von der 20. CGPM) zu abgeleiteten Einheiten erklärt; davor bildeten sie eine eigene Klasse – die „Ergänzenden Einheiten“. Nach dem Einheitenrecht der Schweiz sind Radiant und Steradiant weiterhin (Stand: Oktober 2007) keine „abgeleiteten“, sondern „ergänzende“ Einheiten.
  3. In der Lichttechnik wird der Steradiant üblicherweise ausdrücklich hingeschrieben, also nicht durch 1 ersetzt.
  4. Neben Pascal ist laut CGPM auch die Maßeinheit Bar (Einheitenzeichen bar) erlaubt, dabei gilt: 1 bar = 100 000 Pa
  5. Für die Umrechnung der Celsius-Temperatur in die thermodynamische Temperatur gilt: . Das passt zur früheren Definition des Nullpunktes der Celsius-Skala beim Schmelzpunkt von Wasser, der etwa 0,01 K unter dem Tripelpunkt liegt. Für niedrige Temperaturen ist K üblich. Das °C darf nach deutschem Einheitenrecht keine Vorsätze für Maßeinheiten tragen.
    Die Einheit Kelvin kann benutzt werden, um eine Temperaturdifferenz anzugeben. Eine Differenz zweier Celsius-Temperaturen darf auch in Grad Celsius angegeben werden (beides laut DIN 1301-1:2010, Anhang A, Abschnitt A.5).
  1. Das Urkilogramm – Der Dinosaurier unter den Maßeinheiten, Bericht aus einer Quarks und Co-Sendung