Kernwaffe

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Atomwaffe)
Wechseln zu: Navigation, Suche
Atombombentest „Romeo“ (Sprengkraft 11 Megatonnen TNT-Äquivalent) am 27. März 1954 auf dem Bikini-Atoll

Kernwaffen – auch Atomwaffen oder Nuklearwaffen genannt – sind Waffen, deren Wirkung auf den kernphysikalischen Reaktionen der Kernspaltung oder der Kernfusion beruht. Konventionelle Waffen beziehen dagegen ihre Explosionsenergie aus chemischen Reaktionen, bei denen die Atomkerne unverändert bleiben. Zusammen mit biologischen und chemischen Waffen gehören Kernwaffen zu den Massenvernichtungswaffen.

Bei der Explosion einer Atomwaffe findet eine Kettenreaktion statt, die sehr viel Energie in Form von Hitze, Druckwelle und Strahlung freisetzt. Dadurch kann eine Kernwaffe innerhalb kürzester Zeit ganze Städte zerstören und viele hunderttausende Menschen töten. Die radioaktive Strahlung verursacht medizinische Langzeitschäden, durch den radioaktiven Niederschlag (Fallout) werden größere Gebiete verseucht.

Die Erfindung von Kernwaffen stellte einen Wendepunkt in der Kriegsführung dar. Die Atombombe wurde zuerst von den USA im Manhattan-Projekt entwickelt und am 16. Juli 1945 erstmals erfolgreich getestet (Trinity-Test). Am 6. und 9. August 1945 fanden die Atombombenabwürfe auf Hiroshima und Nagasaki statt, die hunderttausende Opfer forderten. Seitdem wurden Atomwaffen nie wieder gezielt eingesetzt. Nachdem die Sowjetunion 1949 selbst Kernwaffen entwickelte, entstand während des Kalten Krieges ein Wettrüsten zwischen USA und UdSSR, an dessen Höhepunkt die beiden Staaten zusammen rund 70.000 Atomsprengköpfe besaßen.[1] Die militärische Doktrin der gegenseitigen Abschreckung bestimmte den Kalten Krieg wesentlich mit und trug nach Ansicht verschiedener Politiker und Politikwissenschaftler dazu bei, dass es zu keinem direkten Krieg zwischen den beiden Blöcken kam. Nach und nach erlangten weitere Staaten Kernwaffen, so dass heute neun Staaten Atommächte sind: USA, Russland, Großbritannien, Frankreich, China, Israel, Indien, Pakistan und Nordkorea (in chronologischer Reihenfolge).

Zusammen haben diese Staaten heute ca. 19.000 Atomsprengköpfe.[2] Das ist genug, um die Menschheit mehrfach zu vernichten (Overkill).[3] Die Weiterverbreitung von Atomwaffen zu verhindern, gilt als eine der größten Herausforderungen für die internationale Sicherheit im 21. Jahrhundert. Seit dem ersten Kernwaffeneinsatz wurde aufgrund der katastrophalen humanitären Folgen und der Gefahr, die Kernwaffen für die Menschheit darstellen, vielfach ihre komplette Abrüstung gefordert. Verschiedene internationale Verträge haben zu Einschränkungen und Reduktionen der Kernwaffenarsenale (Rüstungskontrolle) und zu atomwaffenfreien Zonen geführt.

Weitere spezifische Details finden sich in folgenden Artikeln:

Geschichte

Begriff

Kurz nach der Entdeckung der Radioaktivität gegen Ende des 19. Jahrhunderts wurde klar, dass beim Zerfall radioaktiver Elemente über lange Zeiträume ungeheuer große Energiemengen freigesetzt werden. Schon bald entstanden daher Spekulationen über die technische und militärische Nutzung dieser neuartigen Energie. Das Wort Atombombe („atomic bomb“) wurde von H. G. Wells in seinem 1914 erschienenen Roman „The World Set Free“ geprägt, der sich dabei von den Veröffentlichungen Frederick Soddys zur Radioaktivität inspirierte. Der Begriff der Atombombe entstand damit zwei Jahrzehnte vor der Entdeckung der Kernspaltung, mit der eine Waffe realisiert werden konnte, die Wells Vision ähnelte. Für die in den 1940er Jahren entwickelten Nuklearwaffen wurde also ein bereits literarisch eingeführter Begriff verwendet.

1911 entdeckte Rutherford den grundsätzlichen Aufbau der Atome aus einem schweren Kern und einer leichten Atomhülle aus Elektronen. In der Folgezeit wurden die sogenannten atomphysikalischen Vorgänge, zu denen auch chemische Reaktionen gehören und an denen im Wesentlichen die Elektronenhülle beteiligt ist, von den energiereicheren Vorgängen im Atomkern (wie der Radioaktivität und der Kernspaltung) unterschieden, die zum Gegenstand der Kernphysik wurden. Daher werden statt der umgangssprachlichen Bezeichnungen „Atombombe“ und „Atomkraftwerk“ in der Fachsprache oft die Begriffe „Kernwaffe“ bzw. „Nuklearwaffe“ (von lat. „Nukleus“, Kern) und „Kernkraftwerk“ verwendet.

Diese fachlichen Bezeichnungen empfinden jedoch viele Menschen – speziell Atomkraftgegner und Atomwaffengegner – als irreführend und verharmlosend. So schreibt der deutsche Journalist und Sprachkritiker Wolf Schneider unter der Überschrift „Weg mit den Tarnwörtern!“:

Atomwaffen waren einigen Experten zu ungenau, da es die Atomkerne seien, auf die es ankomme. Also sagten sie Kernwaffen [...]. Da dieser Kern auf Lateinisch und englisch nucleus heißt, wurden daraus die nuklearen Waffen, die zugleich der Adjektivitis und der Lust an der vielsilbigen Blähung entgegenkamen, ebenso wie die atomaren Waffen, die das bisschen Genauigkeit wieder aufheben, doch dieselbe Lust befriedigen. Atomwaffen, Atombomben, Atomraketen und Atomkraftwerke: das ist die deutsche Sprache und nichts sonst.
Die Kernkraftwerke legen den Verdacht nahe, dass die Vorsilbe Kern-, mag sie zunächst auch um der scheinbaren Genauigkeit willen eingeführt worden sein, inzwischen nicht ungern zur Tarnung und Beschwichtigung verwendet werden. Wer sollte etwas gegen Kerne haben? Ein Grund mehr, von "Atomkraftwerken" zu sprechen und nur von ihnen.“[4]

Auch die Behördensprache hat die Fachbegriffe nicht immer nachvollzogen. So werden in Deutschland die für die Kernenergie fachlich zuständigen Genehmigungsbehörden teilweise als „Atomaufsicht“ bezeichnet, es gibt ein „Atomgesetz“, und ein Vorgänger des Bundesministeriums für Bildung und Forschung hatte den Titel „Atomministerium“. Auch im Sprachgebrauch der meisten anderen Nationen sind die herkömmlichen Bezeichnungen verbreitet, wie der Name der Internationale Atomenergieorganisation (IAEO) zeigt.

Mit dem Begriff „Atombombe“ im engeren Sinne wurden allgemein die auf der Kernspaltung (Fission) beruhenden Kernwaffen bezeichnet (A-Bombe). Im Gegensatz dazu wurden die Fusionswaffen mit dem Begriff „Wasserstoffbombe“ (H-Bombe) belegt. Daneben gibt es Spezialentwicklungen wie die „Kobaltbombe“ und die „Neutronenbombe“. Heute werden alle Arten von Waffen, die Kernumwandlungen benutzen, unter der Bezeichnung nukleare Waffe beziehungsweise Kernwaffe zusammengefasst.

Anfänge

Allgemein bekannt für ihre Arbeit bei der Entwicklung von Kernwaffen sind Robert Oppenheimer und Edward Teller. Jedoch der wohl erste Wissenschaftler, der ernsthaft über den tatsächlichen Bau einer Kernwaffe nachdachte, war der ungarische Physiker Leó Szilárd. Bereits im September 1933 dachte er an die Möglichkeit, mittels Beschuss durch Neutronen Atomkerne zu einer Kettenreaktion anzuregen. Diese Idee war zu jener Zeit noch sehr umstritten und mehr spekulativ, später auf diesem Gebiet sehr erfolgreiche Forscher wie Ernest Rutherford, Enrico Fermi und Otto Hahn glaubten damals noch nicht daran, dass Kerne sich überhaupt spalten lassen. 1934 äußerte die deutsche Chemikerin Ida Noddack-Tacke die Vermutung „daß bei der Beschießung schwerer Kerne mit Neutronen diese Kerne in mehrere größere Bruchstücke zerfallen.“[5]

Nach der Entdeckung der neutroneninduzierten Urankernspaltung 1938 durch Otto Hahn und Fritz Straßmann [6], und deren korrekter theoretischer Deutung durch Lise Meitner und deren Neffen Otto Frisch[7] war es im Frühsommer 1939 soweit, dass die notwendigen theoretischen Grundlagen und experimentellen Befunde veröffentlicht waren, um bei ausreichender Verfügbarkeit von spaltbarem Uran eine Kernwaffe zu bauen. Diese Möglichkeit erkannten zuerst die beiden an der Universität Birmingham arbeitenden deutsch-österreichischen Emigranten Rudolf Peierls und Otto Frisch. In einem geheimen Memorandum aus dem März 1940 beschrieben sie theoretische Berechnungen zum Bau einer Uran-Bombe und warnten eindringlich vor der Möglichkeit des Baus einer Atombombe durch Deutschland. Infolgedessen wurde die ebenfalls geheim gehaltene britische MAUD-Kommission ins Leben gerufen, die Forschungen zum Bau einer Atombombe empfahl.

Schon vor dem Beginn des Zweiten Weltkrieges am 1. September 1939 richteten die drei aus Deutschland in die Vereinigten Staaten emigrierten Physiker Leó Szilárd, Albert Einstein und Eugene Wigner im August 1939 einen Brief an den damaligen US-Präsidenten Franklin D. Roosevelt, um ihn vor der Möglichkeit der Entwicklung einer Atombombe in Deutschland zu warnen und ihn zu der Entwicklung einer eigenen Atombombe anzuregen.

Doch es sollte noch bis zum Herbst 1940 dauern, bis Enrico Fermi und Leó Szilárd genügend finanzielle Mittel erhielten, um mit der Entwicklung eines Kernreaktors zu beginnen.

Als die amerikanische Regierung durch die Erfolge an dieser Arbeit davon überzeugt wurde, dass die Entwicklung einer Atombombe grundsätzlich möglich ist und dass auch der Kriegsgegner Deutschland diese Möglichkeit besitzt, wurden die Forschungen intensiviert und führten schließlich zum Manhattan-Projekt.

Deutsches Kernwaffenprojekt

Hauptartikel: Uranprojekt

Im nationalsozialistischen Deutschland sollen während des Zweiten Weltkrieges Wissenschaftler wie Werner Heisenberg, Carl Friedrich von Weizsäcker, Walther Gerlach, Kurt Diebner und Otto Hahn unter anderem im Rahmen des deutschen Uranprojektes an der militärischen Nutzbarmachung der Kernspaltung zur Erreichung deutscher Kriegsziele gearbeitet haben.

Die Befürchtung der USA, Deutschland könnte so einen eigenen nuklearen Sprengsatz entwickeln, war ein wichtiger Anlass, ein eigenes Atombombenprogramm zu initiieren. Es wurde vermutet, dass mehrere, über das Gebiet des Deutschen Reiches verteilte und zum Teil unabhängig voneinander arbeitende Forschergruppen bis zum Kriegsende an der Entwicklung einer deutschen Kernwaffe arbeiteten. Nach dem Krieg wurde jedoch festgestellt, dass im Uranprojekt keine Kernwaffen entwickelt wurden. Mit dem letzten Großversuch, dem Forschungsreaktor Haigerloch, war die Forschergruppe um Heisenberg 1945 noch nicht einmal bis zur Herstellung einer kritischen nuklearen Kettenreaktion gekommen.

Allerdings gibt es auch Recherchen, in denen von geheimen Versuchen der Forschergruppe um Kurt Diebner mit strahlendem Material in Verbindung mit Explosionen gesprochen wird.[8] Dies wird von vielen Physikern angezweifelt und bislang konnten auch keine Beweise für die Durchführung solcher Tests erbracht werden.[9]

Manhattan-Projekt

Hauptartikel: Manhattan-Projekt
Die Trinity-Bombe, die erste gezündete Atombombe der Welt, einen Tag vor dem Test

1942 wurde unter größter Geheimhaltung unter dem Decknamen „Projekt Y“ (als Teil des Manhattan-Projekts) das Forschungslaboratorium Los Alamos im US-Bundesstaat New Mexico konzipiert. Von 1943 an arbeiteten dort unter der wissenschaftlichen Leitung Robert Oppenheimers mehrere tausend Menschen, vielfach Wissenschaftler und Techniker.

Am 16. Juli 1945 wurde die erste Atombombe oberirdisch bei Alamogordo gezündet (Trinity-Test). Das in der Bombe verwendete nukleare Brennmaterial war Plutonium und besaß eine Sprengkraft von 21 Kilotonnen TNT-Äquivalent.

In einem Brief an den US-Präsidenten befürwortete Einstein ein US-amerikanisches Atomprojekt als Gegengewicht zum vermuteten deutschen Atomprojekt. Wegen der Kapitulation Deutschlands kam hier keine Atombombe zum Einsatz. Die ersten Luftangriffe mit Atombomben wurden am 6. und 9. August 1945 gegen die japanischen Städte Hiroshima und Nagasaki geflogen.

Einsatz gegen Hiroshima und Nagasaki

Am 6. August 1945, also 21 Tage nach dem ersten erfolgreichen Test bei Alamogordo, warf der Bomber Enola Gay die erste Atombombe (Sprengstoff: Uran-235), Little Boy genannt, über der Küstenstadt Hiroshima ab, wo sie um 8.15 Uhr Ortszeit in etwa 600 m Höhe über dem Boden detonierte. Rund 90.000 Menschen starben sofort, weitere 50.000 Menschen starben innerhalb von Tagen bis Wochen an der Strahlenkrankheit.

Am 9. August 1945 sollte der Bomber Bockscar die zweite Atombombe (Sprengstoff: Plutonium-239), Fat Man genannt, über Kokura abwerfen. Als dort auch nach drei Anflügen noch schlechte Sicht herrschte und der Treibstoff knapp wurde, wich der Kommandant auf das Alternativziel, die Küstenstadt Nagasaki, aus. Da auch dort die Wolkendecke zu dicht war, wurde das Stadtzentrum um mehrere Kilometer verfehlt. Weil zudem das Stadtgebiet hügeliger als das Hiroshimas ist, was die Ausbreitung der Druckwelle behinderte, waren dort weniger Opfer zu beklagen – obwohl Fat Mans Sprengkraft rund doppelt so stark war wie die von Little Boy. Dennoch kamen bei diesem Angriff 36.000 Menschen sofort ums Leben, weitere 40.000 Menschen wurden so stark verstrahlt, dass sie innerhalb von Tagen bis Wochen starben.

Lange Zeit wurde angenommen, weitere Zehntausende Menschen seien im Laufe von Jahren und Jahrzehnten an Spätfolgen der Strahlenbelastung gestorben. Neueste Studien aus Deutschland, USA und Japan haben diese Schätzungen deutlich nach unten korrigiert: demnach können etwas mehr als 700 Todesfälle der nuklearen Verstrahlung zugeordnet werden.[10]

Die Bedeutung und die Notwendigkeit der Atombombeneinsätze sind bis heute umstritten.[11] Befürworter argumentieren vor allem, dass der Einsatz die Kriegsdauer verringert und somit Millionen Menschen das Leben gerettet habe. Dagegen argumentieren andere Wissenschaftler, dass ein Atombombeneinsatz ethisch nicht zu verantworten gewesen sei, der Krieg auch ohne Atombombeneinsatz in kurzer Zeit geendet hätte und Alternativen bestanden hätten, die entweder verworfen, nicht genutzt oder nicht bedacht worden seien.[12]

Entwicklung nach dem Zweiten Weltkrieg

Atombombentest auf der Nevada Test Site während des Manövers Desert Rock, 1. November 1951

Die Zeit unmittelbar nach dem Zweiten Weltkrieg war zunächst von einer langsamen Weiterentwicklung der Atombombe geprägt. Während die USA unterschiedliche Tests wie eine Unterwasserexplosion durchführten, arbeiteten Großbritannien und die Sowjetunion an eigenen Atombomben. 1948 besaßen die USA rund 50 einsatzbereite Sprengköpfe. Die Sowjetunion wurde schon während des Zweiten Weltkriegs von Klaus Fuchs über das Atombombenprogramm informiert. Das Sowjetische Atombomben-Projekt führte zur erfolgreichen Zündung der ersten eigenen Atombombe am 29. August 1949, was Großbritannien erst am 2. Oktober 1952 gelang. In dieser Zeit entstand auch das nebenstehende Bild eines amerikanischen Truppenversuchs mit Soldaten in geringer Entfernung zur Atomexplosion, das den teilweise sorglosen, teilweise rücksichtslosen Umgang mit Radioaktivität in der damaligen Zeit dokumentiert. Die Volksrepublik China zündete am 16. Oktober 1964 eine erste Atombombe im Kernwaffentestgelände Lop Nor (Provinz Xinjiang). Die mit sowjetischer Technik möglich gewordene Entwicklung kostete umgerechnet über 4 Milliarden US-Dollar, die das Land während des Großen Sprungs nach vorn ausgegeben hatte.

Entwicklung der Wasserstoffbombe

Die weitere Entwicklung von Kernwaffen führte zur Wasserstoffbombe. Die erste Zündung einer Wasserstoffbombe mit dem Codenamen Ivy Mike erfolgte am 31. Oktober/1. November 1952 durch die USA auf dem Eniwetok-Atoll und setzte eine Energie von 10,4 Megatonnen TNT-Äquivalent frei. Diese Sprengkraft entspricht dem 800-fachen der Hiroshimabombe.

Am 12. August 1953 zündete auch die Sowjetunion ihre erste Wasserstoffbombe. Im Kernwaffentestgebiet von Semipalatinsk brachte die UdSSR die erste transportable H-Bombe am 22. November 1955 zur Explosion.[13] Die USA folgten am 21. Mai 1956 durch eine über der Pazifikinsel Namu von einem Flugzeug abgeworfene Bombe. 1961 erprobte die Sowjetunion dann auf der Insel Nowaja Semlja die Zar-Bombe, die mit 57 MT stärkste jemals gezündete Kernwaffe.

Die Notwendigkeit, Plutonium und angereichertes Uran zum Kernwaffenbau herzustellen, führte zur Entwicklung und zum Bau von Urananreicherungsanlagen sowie von ersten Kernreaktoren bzw. Forschungsreaktoren. Die dabei gewonnenen Erfahrungen beschleunigten den Aufbau einer zivilen Nutzung der Kernenergie.

Weltweit, teilweise auch in den USA selbst, wird der Einsatz dieser Massenvernichtungswaffen hauptsächlich gegen die Zivilbevölkerung als unmoralisch bzw. ethisch nicht verantwortbar verurteilt.

Die Entwicklung der Atombombe wird heute allgemein als das dunkelste Kapitel der Technik- und Wissenschaftsgeschichte angesehen. Die Atombombe ist zum Inbegriff des „Fluches der Technik“ geworden.[14]

Die Erfindung der Kernwaffen löste ein beispielloses Wettrüsten – insbesondere zwischen den USA und der Sowjetunion – aus und war damit die größte Bedrohung in der Zeit des Kalten Krieges.

Kernwaffen wurde hier wiederum auch eine hemmende Wirkung zugeschrieben, wonach gerade die Bedrohung durch eine totale Auslöschung der Menschheit das „Gleichgewicht des Schreckens“ aufrechterhalten und damit eine direkte Konfrontation vermieden habe.

Entwicklung nach dem Kalten Krieg

Nach dem Zerfall der Sowjetunion zu Beginn der 1990er Jahre bezweifeln Experten den militärischen Sinn von Kernwaffen, da jedes Ziel auch mit konventionellen Waffen der gewünschten Größenordnung zerstört werden kann. Als größte Gefahr der atomaren Bewaffnung wird daher ein Einsatz durch Terroristen angesehen, denn diese könnten bei Verwendung von Atomwaffen mit geringem Aufwand großen Schaden anrichten, während Atomwaffen im Kampf gegen den Terrorismus vollkommen ungeeignet sind.

Unabhängig von dieser Entwicklung blieben die USA und Russland als Nachfolgerstaat der Sowjetunion diejenigen Staaten mit den meisten Kernwaffen. Ihr Arsenal wird auch weiterhin gepflegt, entzog sich jedoch nach Ende des Kalten Krieges mehr und mehr der öffentlichen Aufmerksamkeit. Während zunächst die Entwicklungstätigkeit in diesem Bereich erlahmte, werden in den USA seit Ende der neunziger Jahre so genannte Bunker Buster entwickelt, welche in seltenen Fällen mit nuklearen Sprengköpfen versehen werden. Diese Waffen dienen der Vernichtung unterirdischer Anlagen. Sie werden mit hoher Geschwindigkeit in den Boden geschossen, dringen in diesen ein und explodieren dann unterirdisch.

Die Entwicklung solcher kleiner Kernwaffen wird in der Fachwelt als eine Gefahr eingeschätzt, da ihr Einsatz kaum Aufsehen erregen würde. Statt zerstörter Städte und tausender Toter würde die Weltöffentlichkeit lediglich einen kleinen Krater sehen. In der Konsequenz würde die Hemmschwelle sinken, Atomwaffen einzusetzen und auf diese Weise vergleichsweise preiswert – ohne Verlust eigener Soldaten und ohne allzu negatives Image – Kriege zu führen. Auch der Atomwaffensperrvertrag würde damit in Frage gestellt werden, was unabsehbare Konsequenzen zur Folge haben könnte (Vertragsabschaffung).

Atombombe Little Boy („Kleiner Junge“) auf einem Transportwagen kurz vor dem Abflug nach Hiroshima (13 kT TNT-Äquivalent Sprengkraft)

Konstruktion

Hauptartikel: Kernwaffentechnik

Die technische Entwicklung der Kernwaffen seit den 1940er Jahren hat eine große Vielfalt unterschiedlicher Varianten hervorgebracht. Unterschieden werden grundsätzlich Atombomben nach dem Kernspaltungs- oder Fissionsprinzip („klassische“ Atombombe) und nach dem Kernfusionsprinzip (Wasserstoff- oder H-Bombe).

In einer Kernspaltungsbombe wird zur Auslösung eine überkritische Masse von spaltbarem Material zusammengebracht. Wie hoch diese Masse ist, hängt von Material, Geometrie und Konstruktion ab. Die kleinste kritische Masse lässt sich mit einer Kugelform des spaltbaren Materials erreichen, am häufigsten werden Uran-235 oder Plutonium-239 verwendet. Die Überkritikalität führt zu einer Kernspaltungs-Kettenreaktion mit schnell anwachsender Reaktionsrate. Die dadurch freigesetzte Energie bringt das Material zur explosiven Verdampfung.

Bei der Fusionsbombe wird zunächst eine Kernspaltungsbombe gezündet. Die dadurch im Inneren der Bombe erzeugten Drücke und Temperaturen reichen aus, um in dem in ihr enthaltenes Li6-deuterid die Fusionsreaktion zu zünden.[15]

Explosion von Atombomben

Die zwei Methoden der Zusammenfügung unterkritischer Massen: Gun-Design und Implosion
Atombombe Fat Man („Dicker Mann“) wird auf Transportwagen verladen, kurz vor dem Flug nach Nagasaki (Sprengkraft 22 kT TNT)
Prinzipskizze einer „Gun-Design“-Atombombe

Um Atombomben zur Explosion zu bringen, also den Kernspaltungsprozess in Gang zu setzen, wurden mehrere verschiedene Systeme entwickelt.

Gun-Design

Das einfachste Prinzip besteht darin, mit einer konventionellen Sprengladung einen für sich allein unterkritischen Kernsprengstoffkörper auf einen zweiten, ebenfalls unterkritischen zu schießen, um die beiden Teile zu einer überkritischen Masse zusammenzufügen. Es werden entweder zwei Halbkugeln aus spaltbarem Material mit zwei Sprengstoffkapseln aufeinander geschossen oder ein zylinderförmiger Körper aus spaltbarem Material wird auf eine Kugel mit einem entsprechenden Loch geschossen.

Ein solcher Aufbau einer Atombombe wird „Gun-Design“ genannt. Die von den USA am 6. August 1945 auf Hiroshima abgeworfene Atombombe Little Boy war nach diesem System gebaut und hatte eine Sprengkraft von 13 Kilotonnen TNT.

Implosion

Eine weitere Methode ist die Implosion, bei der das spaltbare Material als Hohlkugel vorliegt. Diese ist von einer Schicht Sprengstoff umgeben, der bei der Explosion durch eine Anzahl elektrischer Zünder so gezündet wird, dass die entstehende Druckwelle das Spaltmaterial im Zentrum zusammendrückt. Durch diese Implosion erhöht sich dessen Dichte, ein überkritischer Zustand entsteht.

Sowohl bei der Testbombe von Alamogordo als auch bei der am 9. August 1945 auf Nagasaki abgeworfenen Atombombe handelte es sich um Implosionsbomben. Diese hatten eine Sprengkraft von 20 Kilotonnen TNT.

Kenngrößen

Die bei der Explosion einer Nuklearwaffe freigesetzte Energie wird gewöhnlich in Kilotonnen angegeben. Eine Kilotonne, abgekürzt kT, ist diejenige Energie, die bei der Detonation von 1000 Tonnen (1 Gg) TNT freigesetzt wird (etwa 4·1012 J). Daher wird auch von TNT-Äquivalent gesprochen. Aus diversen Gründen ist die Sprengkraft von konventionellen und nuklearen Waffen über diese Einheit aber nur ungefähr gleichzusetzen. Bei sehr starken Explosionen, etwa von Wasserstoffbomben, wird die Sprengkraft in Megatonnen, kurz MT, angegeben. Diese Einheit entspricht der Energie einer Million Tonnen (1 Tg) TNT.

Die reine Sprengkraft allein ist allerdings noch kein Maß für die Wirksamkeit einer Kernwaffe. Je nach Typus, Einsatzbereich und Explosionshöhe der Waffe sind verschiedene andere Faktoren von Bedeutung. Es sind unter anderem folgende Kenngrößen in Verwendung:

Die amerikanische LGM-118A Peacekeeper (MX) kann bis zu zehn unabhängig steuerbare Wiedereintrittskörper mit je einem W87-Sprengkopf transportieren.
  • Totaler Zerstörungsradius: der Radius um das Explosionszentrum, in dem alles tierische und menschliche Leben sowie alle Gebäude, Pflanzen usw. komplett vernichtet werden. Je nach Größe der Bombe kann dieser bis zu 10 km betragen. Die experimentelle sowjetische Zar-Bombe hatte in ihrer stärksten Version einen totalen Zerstörungsradius von bis zu 20 km. Danach folgen weitere Radien, in denen die Zerstörungskraft der Bombe abnimmt, z. B. der Radius, bei dem die Überlebenschance über 50 % liegt; danach der, bei dem sie über 80 % liegt, und so weiter.
  • Millionen Tote: Anzahl der Getöteten bei Explosion in einem Ballungsgebiet. Diese Größe hängt sehr stark vom Ort ab. Insbesondere haben die Bevölkerungsdichte und die Bauweise der Stadt einen sehr großen Einfluss auf die Zahl der Toten. Im Kalten Krieg wurden Modellrechnungen zum Einsatz starker nuklearer Waffen gegen die wichtigsten Ziele durchgeführt, unter anderem Moskau, Leningrad, Washington, D.C. und New York. In heutiger Zeit gibt es entsprechende Simulationen, die von einem terroristischen Anschlag mit einer kleinen Kernwaffe (einige Kilotonnen) ausgehen.[16]
  • Anzahl der Sprengköpfe: Viele Nuklearraketen verfügen über mehrere nukleare Sprengköpfe, die dann in großer Höhe von der Trägerrakete getrennt werden und sich auf eine große Fläche verteilen. Eine einzige Rakete kann auf diese Weise riesige Gebiete verwüsten, so kann etwa die sowjetische SS-18 Satan – je nach Bestückung – ihre Sprengköpfe über ein Areal von bis zu 60.000 km² verteilen. (Zum Vergleich: Bayern hat eine Fläche von 70.552 km².)

Bei modernen Raketen sind die einzelnen Sprengköpfe so steuerbar, dass mit jedem Sprengkopf ein einzelnes Ziel angegriffen werden kann.

Dieses sind jeweils keine festen Einheiten, sondern nur Richtgrößen, anhand derer sich der Schaden einer nuklearen Waffe abschätzen lässt. Je nach Verwendungszweck können auch andere Größen interessant sein, etwa die mechanische, die thermische und die elektromagnetische Leistung, oder der entstehende Fallout und Langzeitwirkungen. Manchmal sind auch einfach nur technische Größen wie Abmessungen und Gewicht von Bedeutung. Um sich ein genaues Bild von der Wirkung einer einzelnen Bombe zu machen, ist die detaillierte Kenntnis verschiedenster Daten notwendig.

Die stärksten als reguläre militärische Sprengköpfe konstruierten Kernwaffen sind Wasserstoffbomben mit bis zu 25 MT Sprengkraft (Sprengkopf für SS-18 ICBM oder Mk-41 Bombe für B-52 Bomber). Die stärkste derzeitig im Einsatz befindliche Kernwaffe ist vermutlich der Sprengkopf der chinesischen DF-5A Interkontinentalrakete mit 3 MT. Typischerweise sind es aber deutlich weniger, so 100 kT bei der häufigsten amerikanischen Kernwaffe W-76-0. Ohne Kernfusion, das heißt nur mit Spaltung von Uran- oder Plutoniumkernen, werden 500 kT (amerikanischer Ivy King-Test – Mk-18 Bombe) bis 800 kT (stärkster französischer Test) erreicht. Fat Man, über Nagasaki abgeworfen, hatte demgegenüber nur 20 kT Sprengkraft. Einige moderne Kernwaffen lassen auch ein Wählen der Sprengkraft zu, so kann die amerikanische B83 Bombe mit wenigen kT bis zu 1,2 MT gezündet werden.

Klassifizierung

Strategische Kernwaffen

Abwurf einer Kernwaffe von einem Flugzeug während der Operation Ivy

Strategische Kernwaffen sind Kernwaffen mit großer Sprengkraft, die nicht auf dem Gefechtsfeld eingesetzt werden, sondern Ziele im gegnerischen Hinterland zerstören sollen, wie z. B. ganze Städte oder Raketensilos von Interkontinentalraketen. Ihre Sprengkraft reicht vom Kilotonnenbereich bis zu theoretisch über 100 Megatonnen TNT bei der Wasserstoffbombe.

Die Nukleare Triade besteht aus Interkontinentalraketen, U-Boot-gestützten ballistischen Raketen und strategischen Bombern. Die Verteilung der Kernwaffen auf mehreren Plattformtypen soll die Schlagkraft einer Nuklearmacht im Konfliktfall sicherstellen.

Strategische Kernwaffen sind:

  • freifallende Kernbomben, die von Flugzeugen (meist Langstreckenbombern) direkt auf das Ziel abgeworfen werden;
  • landgestützte Interkontinentalraketen (ICBM) mit nuklearem Sprengkopf, die in Silos oder mobil auf dem Festland stationiert sind;
  • landgestützte Mittelstreckenraketen (MRBM, IRBM) mit nuklearem Sprengkopf, die in Silos oder auf mobilen Abschussrampen montiert sind. Ein besonderes Problem dieser Waffen ist die extrem kurze Flug- und damit Reaktionszeit von nur wenigen Minuten. Sie gelten deshalb als besonders anfällig für das unbeabsichtigte Auslösen eines Atomschlages, da nach radargestützter (Fehl-)Erkennung einer solchen Rakete praktisch keinerlei Zeit bleibt, politische Entscheidungsprozesse auszulösen. Beispiele für diese Raketen sind die in den 1950er Jahren von den USA in der Türkei stationierten Jupiter-Raketen und jene Raketen, die die UdSSR auf Kuba stationieren wollte – was damals die Kubakrise auslöste. Derartige Waffen werden heute lediglich noch von solchen Staaten stationiert, denen die Technik von Interkontinentalraketen fehlt, wie Pakistan oder Israel.
  • U-Boot-gestützte ballistische Raketen (SLBM) mit nuklearem Sprengkopf;
  • luftgestützte ballistische Raketen (ALBM) mit nuklearem Sprengkopf, gestartet von Flugzeugen;
  • Marschflugkörper (Cruise Missiles) mit nuklearem Sprengkopf, die von Flugzeugen (ALCM), Kriegsschiffen oder U-Booten abgefeuert werden können, sind vorwiegend für den „taktischen“ Einsatz vorgesehen.

Eine Rakete kann je nach Bauart auch mehrere nukleare Sprengköpfe transportieren (sogenannte MIRV-Bauweise, Multiple Independently targetable Re-entry Vehicle) und so Radien von mehreren Hundert Kilometern verwüsten.

Taktische Kernwaffen

Test einer nuklearen Artilleriegranate während Operation Upshot-Knothole
Test einer nuklearen Wasserbombe während Operation Wigwam

Taktische Kernwaffen (auch nukleare Gefechtsfeldwaffen genannt) sollen ähnlich wie konventionelle Waffen zur Bekämpfung gegnerischer Streitkräfte eingesetzt werden. Ihr Wirkungskreis und in der Regel auch die Sprengkraft sind deutlich geringer als bei strategischen Waffen. Die kleinste taktische Atomwaffe im Truppendienst hat eine Sprengkraft von circa 0,3 kT. Der geringe Wirkradius soll einen Einsatz relativ nahe an den eigenen Positionen erlauben.

Taktische Kernwaffen gab und gibt es in verschiedenen Formen:

Die Bezeichnung „taktisch“ ist insofern verharmlosend, als bereits diese Waffen schwerste Zerstörungen anrichten und erhebliche Radioaktivität freisetzen können, was im Kriegsfall verheerende Auswirkungen hätte. Bei der NATO-Nuklearstrategie „Flexible Response“ wurde davon ausgegangen, dass der Einsatz taktischer Kernwaffen kontrollierbar sei. Erwiesen sich konventionelle Kampfmittel als zu schwach, würde der Gebrauch taktischer Kernwaffen die Abwehr von Angriffen auf NATO-Gebiet ermöglichen, ohne dass die Auseinandersetzung zu einem umfassenden nuklearen Schlagabtausch (sog. „all-out war“) eskalieren müsste. Auf sowjetischer Seite wurde diese Theorie von Anfang an verworfen. Man hielt eine Begrenzung für unmöglich, sobald es einmal zum Einsatz von Kernwaffen gekommen wäre. Auch Frankreich stand dem Konzept sehr skeptisch gegenüber.

Spezielle Kernwaffen

Neutronenbomben

Neutronenbomben sind taktische Kernwaffen, die im Vergleich zur herkömmlichen Bauweise eine geringere Sprengkraft (etwa 1 kT), aber eine stärkere Neutronenstrahlung erzeugen.

Man versprach sich davon vor allem eine erhöhte Effektivität gegen gepanzerte Streitkräfte: Für die Zerstörung von Panzern muss eine Bombe normalerweise in der unmittelbaren Umgebung explodieren, da die Panzerung einen Schutz gegen Druck und Hitze bietet. Gegen Neutronenstrahlung hingegen schützt sie kaum, da Neutronen auch schwere Materialien nahezu ungehindert durchdringen. Die Explosion einer Neutronenbombe könnte daher die Besatzung eines Panzers augenblicklich töten, ohne den Panzer selbst zu vernichten. Allerdings erzeugt die Neutronenstrahlung im Zielgebiet sekundäre Radioaktivität, die das Gelände und dort verbliebenes Material dauerhaft unbrauchbar macht.

Daneben können Neutronenbomben verwendet werden, um gegnerische Kernwaffen (z. B. anfliegende Raketen) durch Zerstören der Zünd- oder Steuerelektronik unbrauchbar zu machen.

Entwicklung und Stationierung von Neutronenbomben, auch in Deutschland, wurden anfangs so begründet, dass ein damit geführter Krieg selbst bei der größeren benötigten Anzahl von Explosionen Land und Infrastruktur weniger verwüste als herkömmliche Kernwaffen. Modellrechnungen zeigten aber bald, dass dieses in der Praxis kaum zuträfe. Denn in dem wirksam bestrahlten Gebiet wäre bereits die Druck- und Hitzewirkung tödlich, auch Gebäude und Anlagen würden zerstört und das Material durch Einfang radioaktiv. Eine „saubere“ Alternative zu klassischen Atombomben würde somit nicht erreicht.

Der Denkansatz der Neutronenwaffe, Menschen zu töten und Sachen, z. B. Panzer, zu erhalten, wurde ab 1977 in Westeuropa von vielen Menschen scharf kritisiert. Egon Bahr sprach von einem „Symbol der Perversion menschlichen Denkens“.[17] Weiterhin wurde kritisiert, dass der Tod durch eine Neutronenbombe besonders grausam sei. Menschen, die starken Neutronenstrahlen ausgesetzt sind, würden einen qualvollen und langsamen Tod sterben. Opfer würden mehrere Wochen lang unter Haarausfall, Lähmung, Verlust der Sinneswahrnehmung und Artikulationsfähigkeit, Spasmen, unkontrolliertem Durchfall und Flüssigkeitsverlust leiden, bis sie schließlich sterben. Die Friedensbewegung entfaltete ab 1977 zunächst in den Niederlanden, dann auch in Westdeutschland eine Kampagne gegen die Neutronenbombe.[18]

Zudem befürchteten die Kritiker, durch die Neutronenbombe werde die Einsatzschwelle von Kernwaffen herabgesetzt und damit das Risiko einer Eskalation zum Krieg mit stärkeren nuklearen Bomben erhöht.

In den USA wurden seit 1974 etwa 800 Neutronensprengsätze gebaut. Die letzten Neutronenbomben wurden 1992 offiziell verschrottet.

Mini-Nukes

Sogenannte Mini-Nukes sind Kernwaffen mit einer Sprengkraft unter fünf Kilotonnen. Die neue Forschung über kleine, technisch hoch entwickelte Kernwaffen ist in den USA geplant. Der US-Senat hob im Mai 2003 ein 10 Jahre altes Verbot der Entwicklung von Mini-Nukes auf. Diese Entscheidung wurde im Kongress durch eine Resolution geschwächt, welche die Forschung erlaubt, jedoch ein Verbot der Entwicklung oder Herstellung neuer Atomwaffen mit geringer Sprengkraft beibehält.

Kofferbomben, beispielsweise zum Einsatz durch Geheimdienste oder Terroristen, wurden beschrieben und werden auch auf dem High Energy Weapons Archive vorgestellt; dort wird aber auch betont, dass die physikalische Umsetzbarkeit mehr als zweifelhaft ist (beispielsweise wären zu hohe Mengen an konventionellem Sprengstoff zur Zündung nötig gewesen). Andererseits lag bereits das Gewicht des amerikanischen W-54-Gefechtskopfs zum Davy-Crockett-Leichtgeschütz bei nur 23 Kilogramm. Die eiförmige Waffe aus den 1950er Jahren hatte einen Durchmesser von nur etwa 27 cm bei 40 cm Länge und erreichte eine maximale Sprengkraft von etwa 1 kT.

Bunkerbrecher

Nukleare bunkerbrechende Waffen sollen tief in die Erde eindringen, um unterirdische und gehärtete Bunker zu zerstören. Es ist ausgeschlossen, dass die Bomben, aus der Luft abgeworfen, tief genug unter die Oberfläche eindringen können und die Explosion vollkommen unterirdisch abläuft. Somit wird ein Bombenkrater erzeugt und hochradioaktives Material wird in die Luft ausgeworfen. Ebenso sind durch die erzeugten Erschütterungen großflächige Zerstörungen um das eigentliche Ziel herum zu befürchten. Es gibt im US-Arsenal bereits eine »Bunker Buster«: die B-61-11, die laut des im Januar 2002 veröffentlichten Überprüfungsberichts (Nuclear Posture Review, NPR) der US-Atomwaffenpolitik eine Sprengkraftgröße von mehr als fünf Kilotonnen hat und damit keine »Mini-Nuke« ist. Diese Waffe dringt aus einer Höhe von gut 13.000 Metern nur bis zu sieben Meter in die Erde und 2–3 Meter in gefrorenen Boden ein. Die USA haben etwa 50 dieser Bomben zur Verfügung.

Schmutzige Bombe

Bei einer schmutzigen Bombe wird die Wirkung der Explosion mit der großflächigen und jahrelangen Kontamination durch radioaktiven Niederschlag weiter gesteigert. Dieses wird durch den Aufbau der Waffe oder durch eine Kernexplosion auf dem Erdboden erreicht (für letzteres siehe Kernwaffenexplosion). Besonders die Kobaltbombe wurde als schmutzige Bombe bezeichnet. In dieser Bauform wird um den eigentlichen Sprengsatz ein Kobaltmantel angebracht. Dieses Metall wird durch die Explosion in 60Co umgewandelt, ein stark strahlendes Isotop mit relativ langer Halbwertszeit, das als Staub herabregnen und das betreffende Gebiet für lange Zeit kontaminieren sollte.

Zu Beginn des 21. Jahrhunderts wurde der Begriff Schmutzige Bombe umgeprägt. Man bezeichnet damit nun einen Sprengsatz aus konventionellem Sprengstoff, dem radioaktives Material beigemischt wurde, das durch die Explosion möglichst weit verteilt werden soll. Eine nukleare Explosion findet dabei nicht statt. Es wird angenommen, dass Terroristen derartige USBV einsetzen könnten, um Schrecken zu verbreiten.

Auch die Internationale Atomenergieorganisation warnt davor, dass Terroristen radioaktives Material, z. B. aus Ländern der ehemaligen Sowjetunion, erwerben könnten. Dort, ebenso wie in den USA, kommen immer wieder Substanzen aus Industrie, Forschungseinrichtungen oder Krankenhäusern abhanden. Da das Material für eine schmutzige Bombe aus der zivilen Kerntechnik gewinnbar ist, wird auch die gesamte Kerntechnik zu den Dual-Use-Produkten gezählt.

Als Beispiel für die Folgen einer schmutzigen Bombe wird teils der Goiânia-Unfall in Brasilien 1987 herangezogen, bei dem Diebe in ein leerstehendes Krankenhaus einbrachen und einen Behälter mit radioaktivem 137Caesiumchlorid stahlen und nach Hause nahmen. Aus Neugier und Unwissenheit hantierten viele Menschen in ihrer Umgebung mit dem bläulich fluoreszierenden Material und trugen Teile der Substanz mit sich herum. Mehrere Wohnbezirke waren betroffen, und schließlich starben vier Menschen an der Strahlenkrankheit, zehn weitere brauchten intensive medizinische Behandlung, 85 Gebäude mussten abgerissen oder dekontaminiert werden.

Hauptartikel: Radiologische Waffe

Kernwaffen in Europa

Demonstration gegen Atomwaffen in Deutschland, August 2008 am Fliegerhorst Büchel

Die in Europa gelagerten Kernwaffen (vgl. Sondermunitionslager) sind nach Ende des Kalten Krieges drastisch reduziert worden. Auf den europäischen Luftwaffenstützpunkten sind von 1990 bis 1996 rund 208 Kernwaffensilos der NATO gebaut worden. Ursprünglich waren hierfür 438 NATO-Bunker vorgesehen, die aber nicht mehr benötigt wurden. Die von den US-Streitkräften kontrollierten Bunker für Bomben, die im Ernstfall den NATO-Streitkräften zur Verfügung standen, waren nicht alle bestückt worden. Bis 1998 hatte Großbritannien sein Arsenal an Fallbomben auf den Stützpunkten abgebaut. Ab 1996 wurden dann die weiteren Arsenale geleert.

Die USA und Großbritannien lagerten während des Kalten Krieges bis zu 5.000 Kernwaffen in deutschen Bunkern, darunter das für den Einsatz innerhalb Deutschlands bestimmte Zebra-Paket. Es wird vermutet, dass heute in Europa im Rahmen der nuklearen Teilhabe schätzungsweise 480[19] Nuklearwaffen gelagert sind, davon 20[19] auf dem deutschen Fliegerhorst Büchel.[20] Dort trainiert die Luftwaffe im Rahmen der nuklearen Teilhabe den Einsatz von Kernwaffen durch Jagdbomber vom Typ Tornado. Die deutschen Luftwaffenstützpunkte in Memmingen und Nörvenich verfügten schon ab 1995 über keinerlei Kernwaffen mehr. Auch wird davon ausgegangen, dass die 130[19] Sprengköpfe aus der Ramstein Air Base abgezogen wurden.

Die beiden westeuropäischen Atommächte Großbritannien und Frankreich begannen bereits in den 1960ern bzw. 1970ern Teile ihrer Arsenale auf seegestützte Systeme umzustellen. Beide Staaten unterhalten heute je vier ballistische Atom-U-Boote, von denen jedes mit jeweils 16 Atomraketen ausgestattet werden kann. Frankreich hält lediglich noch 60 Sprengköpfe zum Einsatz durch Bomber bereit, Großbritannien verfügt seit dem Jahr 2000 ausschließlich über seegestützte Systeme. Infolge dieser Veränderung wurde auch die Anzahl der Lagerstätten auf Luftwaffenstützpunkten reduziert. Die seegestützten Sprengköpfe machen heute den größten Teil der in Europa stationierten Atomwaffen aus. Die britischen Sprengköpfe werden komplett in der Marinebasis Clyde gelagert, die französischen in Brest.

NATO-Luftwaffenstützpunkte mit Kernwaffen

(Stand: 2011)[21]

  • Großbritannien
    • Lakenheath (33 WS3-Lagersysteme, zurzeit keine Waffen gelagert)
  • Niederlande
    • Volkel (elf WS3-Lagersysteme, 10–20 Bomben B61-3/4)
  • Belgien
    • Kleine Brogel (elf WS3-Lagersysteme, 10–20 Bomben B61-3/4)
  • Deutschland
  • Italien
    • Aviano (18 WS3-Lagersysteme, 50 Bomben B61-3/4)
    • Ghedi-Torre (elf WS3-Lagersysteme, 10–20 Bomben B61-3/4)
  • Griechenland
    • Araxos (elf WS3-Lagersysteme, zurzeit keine Waffen gelagert)
  • Türkei
    • Balıkesir (elf WS3-Lagersysteme, zurzeit keine Waffen gelagert)
    • Incirlik Air Base (25 WS3-Lagersysteme, 60–70 Bomben B61-3/4)
    • Murted (elf WS3-Lagersysteme, zurzeit keine Waffen gelagert)

Aktueller Stand

Hauptartikel: Atommacht
  • Atommächte im Atomwaffensperrvertrag (China, Frankreich, Russland, UK, USA)
  • Atommächte außerhalb des Atomwaffensperrvertrags (Indien, Nordkorea, Pakistan)
  • unerklärte Atommächte außerhalb des Atomwaffensperrvertrags (Israel)
  • Mitgliedsstaaten der Nuklearen Teilhabe
  • Ehemalige Atommächte

Die fünf ständigen Mitglieder des Weltsicherheitsrats gelten als offizielle Atommächte. Sie sind im Atomwaffensperrvertrag als Staaten mit Kernwaffen aufgeführt.

Zwei Staaten haben bislang die Anzahl ihrer nuklearen Sprengköpfe öffentlich gemacht. Allerdings beziehen sich diese Zahlen lediglich auf die einsetzbaren Sprengköpfe, nicht auf deaktivierte.

Die genaue Anzahl der nuklearen Gefechtsköpfe ist oft unklar und muss geschätzt werden. Die „Federation of American Scientists[24] gab für 2009 folgende Zahlen bekannt:

Indien, Pakistan, Israel und Nordkorea sind nicht im Atomwaffensperrvertrag aufgeführt, besitzen aber trotzdem Kernwaffen und Trägersysteme (Zahlen für 2008[27]):

Die Stiftung Carnegie Endowment for International Peace gab für 2007 folgende Angaben im Proliferation-Report heraus:

  • China: 410
  • Frankreich: 350
  • Großbritannien: 200
  • Russland: ≈ 16.000
  • Vereinigte Staaten: ≈ 10.300

sowie

  • Indien: ≈ 75 bis 110
  • Israel: ≈ 100 bis 170
  • Pakistan: ≈ 50 bis 110

Die Vereinigten Staaten gaben im Mai 2010 die Anzahl ihrer einsatzbereiten nuklearen Sprengköpfe mit Stand vom September 2009 mit 5.113 an. Im Jahr 1967 seien es noch 31.255 Sprengköpfe gewesen.[28]

Das Vereinigte Königreich gab Ende Mai 2010 die vollständige Anzahl seiner Sprengköpfe an. In einer Fragestunde gab der britische Außenminister William Hague bekannt, dass das Land über 225 Kernwaffen verfüge. Damit änderte die britische Regierung ihre traditionelle Haltung, ausschließlich die Anzahl der einsatzbereiten Sprengköpfe bekanntzugeben.[29]

Obwohl lange Zeit nicht von offizieller Seite bestätigt, gilt es als unstrittig, dass auch Israel seit den 1970er Jahren im Besitz von Kernwaffen ist. Mordechai Vanunu hat die Welt vom israelischen Kernwaffenprojekt unterrichtet, nachdem er am Dimona-Reaktor arbeitete. Am 11. Dezember 2006 gab der israelische Ministerpräsident Olmert gegenüber dem deutschen Sender Sat.1 zu, dass Israel eine Atommacht sei.[30][31] Dieses wurde jedoch später von ihm wieder dementiert. Zuvor gab es Proteste in In- und Ausland als Reaktion auf diese Aussage.[32] Im Januar 2007 meldeten iranische Medien, Israel plane einen atomaren Angriff auf den Iran, was von Tel Aviv dementiert wurde.

Besitz von Kernwaffen (Nordkorea)

Nordkorea erklärte im Frühjahr 2005 ebenfalls, Kernwaffen zur Abschreckung entwickelt zu haben; die Aussage wurde jedoch von verschiedenen Seiten bezweifelt. Unstrittig war jedoch, dass Nordkorea ein ambitioniertes Programm zum Erlangen von Kernwaffen unterhält. Am 3. Oktober 2006 wurde von der nordkoreanischen Regierung bekannt gegeben, Atombombentests durchführen zu wollen.

Am 9. Oktober 2006 um 10.36 Uhr Ortszeit wurde in Hwadaeri nahe Kilju ein erfolgreicher unterirdischer Nuklearwaffentest durchgeführt und später durch seismische Messungen in Russland und den USA bestätigt.[33] Die Sprengkraft lag nach südkoreanischen Schätzungen bei über 800 Tonnen TNT. Russlands Verteidigungsministerium geht dagegen von 5 bis 15 Kilotonnen TNT aus.[34] (Zum Vergleich: Die Hiroshima-Bombe hatte eine Sprengkraft von umgerechnet 13 Kilotonnen TNT.)[35] Bis heute ist jedoch noch nicht eindeutig geklärt, ob es sich bei der Detonation vom 9. Oktober 2006 tatsächlich um eine Kernexplosion gehandelt hat. Es wäre möglich, dass die Sprengung auch mit konventionellen Mitteln durchgeführt worden sein könnte, um den politischen Druck auf die internationale Gemeinschaft zu erhöhen. Durch Spionageflugzeuge der USA gibt es Hinweise auf eine sehr schwach erhöhte Radioaktivität in der Atmosphäre über dem Testgebiet, die jedoch so schwach war, dass sie erst im zweiten Anlauf überhaupt entdeckt wurde. Ein zweiter Atomwaffentest gelang offenbar am 25. Mai 2009, wobei eine Sprengkraft von 20 Kilotonnen erreicht worden sein soll.

Programme

Dem Iran wird das Streben nach Atomwaffen allen voran von Israel und den USA unterstellt. Einen Nachweis dafür gibt es allerdings nicht. Nach eigenen Angaben arbeitet der Iran an der zivilen Nutzbarmachung der Kernkraft zur Energiegewinnung.

Diplomaten in Wien, dem Sitz der Internationalen Atomenergiebehörde (IAEA), sagten der F.A.Z., Iran habe vor einigen Wochen bereits 1000 Zentrifugen zur Urananreicherung in seiner Anlage in Natans installiert gehabt. Das ist eine merkliche Erhöhung, da Iran nach Beginn der Anreicherung vor einem Jahr zunächst nur zweimal 164 Zentrifugen in Betrieb hatte. Die Regierung in Teheran meldete am 12. April 2007, dass sie 3000 Zentrifugen in Betrieb hätte, womit eine Anreicherung auf industriellem Niveau erreicht sei.

Die Zahl der Zentrifugen gilt als wichtig, weil daran der Fortschritt des iranischen Atomprogramms abgelesen werden kann. Westliche Regierungen befürchten, dass Iran sich unter dem Deckmantel eines zivilen Atomprogramms die Fähigkeit zum Bau von Kernwaffen verschaffen möchte. 3000 Zentrifugen gelten als notwendig, um den Sprengstoff für ein bis zwei Atombomben im Jahr herzustellen.[36]

Programme oder Besitz in der Vergangenheit

Mit dem Zerfall der Sowjetunion gab es neben Russland drei weitere Nachfolgestaaten der UdSSR mit Kernwaffen: die Ukraine, Weißrussland und Kasachstan. Die Ukraine war zeitweise das Land mit dem drittgrößten Kernwaffenarsenal der Erde. Alle diese Staaten waren Vertragsparteien des START-1-Vertrages, welcher 1991 von der Sowjetunion und den USA unterzeichnet wurde und 1995 in Kraft trat. Die Ukraine, Weißrussland und Kasachstan bekannten sich zum NPT-Vertrag und sicherten zu, ihr Kernwaffenarsenal zu vernichten. Kasachstan und Weißrussland wurden bis 1996 kernwaffenfrei. Der letzte ukrainische Sprengkopf wurde im Oktober 2001 in Russland vernichtet.[37]

Südafrika entwickelte unter der Apartheid-Regierung, wahrscheinlich mit israelischer Hilfe, eine Atomwaffe und führte im September 1979 möglicherweise einen Test vor der Küste durch. Kurz vor dem Ende der Apartheid zerstörte Südafrika seine sechs Atomwaffen, um dem Atomwaffensperrvertrag 1991 beizutreten und sich damit wieder in die internationale Gesellschaft eingliedern zu können. Bis 1994 wurden alle südafrikanischen Atomwaffenanlagen komplett abgebaut.[38]

Argentinien, Brasilien, Libyen und die Schweiz[39][40][41] verfügten in der Vergangenheit über Kernwaffenprogramme, haben diese aber aufgegeben und offiziell beendet. Die Regierung von Schweden diskutierte nach 1945, ob es Kernwaffen entwickeln wollte und entschied sich dagegen.

Unfälle mit Kernwaffen

Zwischen 1950 und 1980 wurden 32 Unfälle allein mit amerikanischen Kernwaffen bekannt. Vor allem in den 1950er und 1960er Jahren mussten viele Waffen bei Notlandungen von Bombern abgeworfen werden. Manche der Waffen wurden nie wieder gefunden, weil sie in den Ozeanen abgeworfen (aber nicht gezündet) wurden.[42] Nach Schätzungen von Greenpeace gingen etwa 50 Atombomben verloren. Elf Bomben vermissen die USA offiziell.[43] [44]Radioaktive Verseuchung wurde in mehreren Fällen festgestellt.

Abstürze von Atombombern und andere Unfälle sind sehr problematisch, weil durch den Aufprall das spaltbare Material in der Umgebung verstreut werden kann, obwohl die Bombe nicht zur Zündung kommt. Im Falle von Plutonium ist dies besonders gefährlich, da es auch chemische Giftigkeit besitzt.

Siehe auch:

Aber nicht nur bei Unfällen, sondern auch im Rahmen des Entsorgungsprozesses innerhalb der normalen Produktion gelangte insbesondere in der Sowjetunion massiv radioaktives Material in die Umwelt (Majak, Karatschai-See).

Abrüstung und Rüstungsbegrenzung

Wegen der enormen Zerstörungskraft nuklearer Bomben gab es stets Bestrebungen, sämtliche Kernwaffen abzuschaffen und generell zu verbieten, um zu verhindern, dass damit die Menschheit vernichtet würde. Der Kalte Krieg und die Machtinteressen einzelner Nationen verhinderte jedoch eine schnelle Abkehr von Massenvernichtungswaffen. Dennoch wurden einige Abkommen durchgesetzt, die jeweils einen großen Schritt in Richtung einer nuklearwaffenfreien Welt signalisierten. Ob die Verträge tatsächlich so wirksam sind wie gewünscht, wird allerdings angezweifelt.

Am 10. Oktober 1963 trat das Teststoppabkommen in Kraft, worin sich einige Großmächte einigten, keine Nuklearwaffen im Wasser, im All und in der Atmosphäre zu zünden. Unterirdische Tests sollten eine bestimmte Stärke nicht überschreiten. Diesem Abkommen sind bisher 120 Nationen beigetreten.

Der Atomwaffensperrvertrag wurde am 1. Juli 1968 von den USA, der Sowjetunion und Großbritannien unterzeichnet und trat 1970 in Kraft. Nachdem Nordkorea seine Unterschrift 2003 zurückgezogen hatte, besitzt das Vertragswerk in 188 Staaten Gültigkeit. Zu den Unterzeichnerstaaten gehört auch die Volksrepublik China und Frankreich (beide 1992). Der Beitritt zum Atomwaffensperrvertrag bedeutet für die Unterzeichnerstaaten die Verpflichtung, sich in regelmäßigen Abständen den von der Internationale Atomenergieorganisation durchgeführten Kontrollen auf Einhaltung des Vertrags zu unterwerfen. Artikel VI besagt allerdings, dass die Staaten sich verpflichten „in naher Zukunft“ Verhandlungen zu führen, welche die „vollständige Abrüstung“ garantieren.[45]

Seit 1996 liegt der Vertrag zum umfassenden Verbot von Nuklearversuchen (CTBT) zur Unterzeichnung auf. Er tritt erst in Kraft, wenn eine bestimmte Gruppe von Ländern ihn ratifiziert hat, u. a. die USA. Die Ratifizierungen einiger wichtiger Länder stehen derzeit noch aus. Vor allem die USA lehnen Rüstungskontrollen ab.

Die Einhaltung der Verträge wird durch verschiedene Techniken verifiziert: Erdbebenmessstationen reagieren bereits auf kleinste Vibrationen und ermöglichen eine recht genaue Ortung von unterirdischen Detonationen. Sie können auch die seismographischen Signaturen von Erdbeben und Atomwaffentests deutlich unterscheiden. Hydroakustik kann Unterwasserexplosionen aufspüren und lokalisieren. Spezialmikrophone und Radionuklid-Detektoren können atmosphärische Kernexplosionen entdecken, identifizieren und lokalisieren. Die Messstationen sind über die ganze Welt verteilt. Wenn der Vertrag in Kraft tritt, wird es auch noch die Möglichkeit der Vor-Ort-Inspektion geben. Die Implementation des Vertrages wird von der Organisation des Vertrags über das umfassende Verbot von Nuklearversuchen (CTBTO) vorbereitet.

Bilaterale Verträge zwischen den USA und der Sowjetunion beziehungsweise Russland mit dem Ziel der Begrenzung oder Abrüstung von strategischen Atomwaffen sind die SALT I und II-Gespräche (1969 bis 1979) die unter anderem zum ABM-Vertrag (1972) führten, der INF-Vertrag (1987) , START I und II (1991 und 1993) und der SORT-Vertrag (2002).

Demontage

Atombomben auf Uranbasis enthalten hochangereichertes Uran. Man spricht erst ab einem Anreicherungsgrad von 85 % von ‚weapon-grade‘. Natur-Uran hat 0,7 % Uran 235; zur Verwendung in Leichtwasserreaktoren muss das Uran auf 3–4 % 235U-Gehalt angereichert werden (reactor-grade). Hochangereichertes Uran ist also ein wertvoller Rohstoff.

Das Plutonium aus Plutoniumbomben dagegen – wegen seiner langen Halbwertzeit und seiner hohen Radiotoxizität ein sehr problematischer Stoff – kann nicht vernichtet werden: „Beseitigt werden kann das Plutonium nur in Form einer Endlagerung nach einer Vermischung mit anderen atomaren Abfällen oder durch eine Umarbeitung in MOX-Elemente.“[46]

Zwischen 1993 und 2013 kooperierten die USA und Russland erfolgreich im Rahmen des Megatonnen zu Megawatt-Abrüstungsprojekts. Durch die Verstromung von 500 Tonnen russischem Atomwaffenmaterial deckten die USA 20 Jahre lang 10% ihrer Elektrizitätserzeugung ab und Russland erhielt insgesamt 17 Milliarden US-Dollar.

Kampagnen für die Abschaffung von Kernwaffen

Begleitend zur Abrüstung von Kernwaffen haben sich zahlreiche internationale Kampagnen für die Abschaffung aller Atomwaffen „I CAN“ gebildet, die zum Thema gegen Atomwaffen Stellung nehmen; darunter sind:

Zahlreiche Appelle zur nuklearen Abrüstung und Rüstungskontrolle wurden auch aus der Physikerschaft an die Politik gerichtet – wie z. B. der Franck Report, das Russell-Einstein-Manifest, das zur Gründung der Pugwash-Bewegung führte, oder die Erklärung der Göttinger 18. Auch von der Deutschen Physikalischen Gesellschaft (DPG) wurde in einer Reihe von Resolutionen auf die mit der Existenz von Kernwaffen verbundenen Gefahren hingewiesen[51] und die Reduktion der vorhandenen Arsenale[52] sowie der Abschluss eines Kernwaffenteststopp-Vertrages[53][54] gefordert. In ihrer jüngsten Resolution vom April 2010 spricht sich die DPG für den Verzicht auf den Ersteinsatz und den Abzug aller in Deutschland und Europa verbliebenen Atomwaffen aus und fordert die Aufnahme von Verhandlungen über eine Nuklearwaffenkonvention für die Ächtung und Beseitigung aller Atomwaffen bis 2020.[55]

Darüber hinaus sprechen sich prinzipiell alle christlichen Kirchen gegen die Verwendung jeder Art von Kernwaffen, zum Teil auch gegen den Besitz, aus. Erst 2006 hat der Ökumenische Rat der Kirchen erneut zur Eliminierung aller nuklearer Waffen aufgerufen.[56]

Ausgehend von katholischen Philosophen in Großbritannien Anfang der 1960er Jahre wurden gegen die Strategie der nuklearen Abschreckung ethische Bedenken eingebracht. Für viele Menschen war die Benutzung einer atomaren Waffe unmoralisch, da sie notwendigerweise den Tod von Zivilisten und die Vergiftung der Erde nach sich zieht. Es wurde folgendermaßen argumentiert: Wenn der Einsatz von Kernwaffen unmoralisch sei, so sei dieses auch die Strategie der nuklearen Abschreckung, da diese die bedingte Intention eine unmoralische Handlung zu setzen anstrebt.

In der katholischen Kirche wird mit dem Zweiten Vatikanischen Konzil (1965) bei der Verwendung der sogenannten wissenschaftlichen Waffen auf die Grenzüberschreitung einer gerechten Verteidigung hingewiesen, da die Anwendung derselben „ungeheure und unkontrollierbare Zerstörungen auszulösen“ vermag. Die Pastoralkonstitution Gaudium et Spes spricht des Weiteren ein Verbot des totalen Krieges aus, der „auf die Vernichtung ganzer Städte oder weiter Gebiete und ihrer Bevölkerung unterschiedslos abstellt“. (GS 80)[57]

Die Verletzung der Prinzipien der Diskrimination und der Proportionalität (siehe Gerechter Krieg) stellen die Hauptkritikpunkte an dem Einsatz von Nuklearwaffen dar.

Siehe auch

Literatur

Sachbücher

  • Peter Auer: Von Dahlem nach Hiroshima. Die Geschichte der Atombombe. Berlin: Aufbau, 1995, ISBN 3-351-02429-0
  • Florian Coulmas: Hiroshima: Geschichte und Nachgeschichte. München: Beck, 2005, ISBN 3-406-52797-3
  • Klaus Fuchs, Ruth Werner, Eberhard Panitz: Treffpunkt Banbury oder Wie die Atombombe zu den Russen kam. 2003, ISBN 3-360-00990-8
  • Robert Jungk: Heller als tausend Sonnen. 1958 und strahlen aus der asche, Alfred Scherz Verlag, 1959
  • Rainer Karlsch, Zbynek Zeman: Urangeheimnisse. 2002, ISBN 3-86153-276-X
  • Hubert Mania: Kettenreaktion. Die Geschichte der Atombombe. Rowohlt Verlag, Reinbek bei Hamburg 2010, ISBN 978-3-498-00664-8
  • Paul Takashi Nagai: Die Glocken von Nagasaki: Geschichte der Atombombe. München: Rex, 1955 – Bericht eines überlebenden Arztes, ISBN 3-89575-056-5
  • Gian L. Nespoli, Giuseppe Zambon: Hiroschima, Nagasaki. 1997, ISBN 3-88975-055-9
  • Richard Rhodes: The Making of the Atomic Bomb 1995, ISBN 0-684-81378-5, deutsch Nördlingen: Greno, 1988; Volk und Welt, 1990, ISBN 3-353-00717-2 (Standardwerk)
  • Helmut Simon (Vorwort): Atomwaffen vor dem Internationalen Gerichtshof. ISBN 3-8258-3243-0
  • Wolfgang Sternstein: Atomwaffen abschaffen!. 2001, ISBN 3-933325-05-6
  • Mark Walker: Die Uranmaschine. Mythos und Wirklichkeit der deutschen Atombombe. Berlin: Siedler, 1990, ISBN 3-88680-359-7
  • Rainer Karlsch: Hitlers Bombe. Deutsche Verlags-Anstalt, München 2005, ISBN 3-421-05809-1
  • Egmont R. Koch: Atomwaffen für Al Qaida. „Dr.No“ und das Netzwerk des Terrors. Berlin: Aufbau Verlag, 2005, ISBN 3-351-02588-2

Bildband

Romane und Theaterstücke

Weblinks

Einzelnachweise

  1. Robert S. Norris und Hans M. Kristensen, "Global nuclear stockpiles, 1945-2006," Bulletin of the Atomic Scientists 62, no. 4 (Juli/August 2006), S. 64. Online unter [1]
  2. http://www.fas.org/programs/ssp/nukes/nuclearweapons/nukestatus.html
  3. http://www.atomwaffena-z.info/atomwaffen-heute/die-atomare-welt/overkill/index.html
  4. Schneider, Wolf: Deutsch für Profis. Wege zu gutem Stil (16. Auflage, München 2001, Seite 61 f.)
  5. Ida Noddack: Über das Element 93. Angewandte Chemie 47(1934), S. 653-655
  6. Hahn, O., Strassmann, F.: Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle. Naturwissenschaften, Band 27, Nummer 1 / Januar 1939. Artikel
  7. Meitner, L., Frisch, O.R.: Products of the Fission of the Uranium Nucleus. Nature 143, 471-472 (18. März 1939), doi:10.1038/143471a0 pdf
  8.  Rainer Karlsch: Hitlers Bombe. Deutsche Verlags-Anstalt, München 2005, ISBN 3-421-05809-1.
  9. Vorlage:Internetquelle/Wartung/Zugriffsdatum nicht im ISO-FormatVorlage:Internetquelle/Wartung/Datum nicht im ISO-FormatIn Bodenproben keine Spur von „Hitlers Bombe“. Physikalisch-Technische Bundesanstalt, 15. Februar 2006, abgerufen am 28. Mai 2009.
  10. spiegel.de: Is Atomic Radiation as Dangerous as We Thought? S. 2, Artikel vom 22. November 2007
  11. Bruce Cumings: Parallax Visions, Duke 1999
  12. Barton J. Bernstein: Understanding the Atomic bomb and the Japanese Surrender: Missed Opportunities, Little-Known Near Disasters, and Modern Memory, in: Diplomatic History, 1995.
  13. Bernd Stöver: Der Kalte Krieg 1947-1991: Geschichte eines radikalen Zeitalters, Seite 148. ISBN 978-3-406-55633-3, abgefragt am 21. November 2009
  14. Siehe auch Die Physiker
  15. Principles of atomic bombs
  16. Vulnerability of populations and the urban health care systems to nuclear weapon attack Simulation und Analyse eines Angriffs mit Atombomben auf US-amerikanische Städte.
  17. Die Welt 14. Januar 2006 online
  18. Interkirchlicher Friedensrat
  19. a b c http://www.spiegel.de/wissenschaft/mensch/0,1518,493451,00.html
  20. http://www.bits.de/public/stichwort/atomwaffen-d-eu.htm
  21. US tactical nuclear weapons in Europe, 2011 (pdf)
  22. http://www.nzz.ch/nachrichten/international/grossbritannien_atomsprengkoepfe_1.5804817.html
  23. http://www.nzz.ch/nachrichten/international/uno_atomwaffen_konferenz_ueberpruefung_sperrvertrag_zahlen_usa_1.5630588.html
  24. http://www.fas.org/programs/ssp/nukes/nuclearweapons/nukestatus.html
  25. Russian nuclear forces, 2009
  26. U.S. nuclear forces, 2009
  27. http://www.nukestrat.com/nukestatus.htm Status of World Nuclear Forces 2008
  28. n-tv.de: USA nennen Zahl der Atomsprengköpfe: Ahmadinedschad sorgt für Eklat. 3. Mai 2010, abgerufen am 4. Mai 2010
  29. NZZ Online: Grossbritannien verfügt über 225 Atomsprengköpfe, 26. Mai 2010. Zugriff am 29. Mai 2010.
  30. Israel im Besitz von Atomwaffen? – Olmert: „Unveränderte Position“ 12. Dezember 2006
  31. Tagesschau Olmert soll über Atomwaffen aufklären (Die ursprüngliche Seite ist nicht mehr abrufbar.)[2] [3] Vorlage:Toter Link/www.tagesschau.de → Erläuterung 13. Dezember 2006
  32. Reuters: Olmert bekräftigt Israels bisherige Atomwaffen-Haltung 12. Dezember 2006
  33. Erfolgreicher Atomtest Nord-Koreas, Daten des U.S. Geological Survey vom 9. Oktober 2006
  34. [4]
  35. [5] Spiegel Artikel vom 9. Oktober 2006 über den Nuklearwaffentest Nordkoreas
  36. „Mindestens tausend Zentrifugen in Iran installiert“ FAZ.NET 12. April 2007
  37. Strategic Arms Reduction Treaty (START I) Chronology
  38. Peter Scholl-Latour: Afrikanische Totenklage – Der Ausverkauf des Schwarzen Kontinents, Goldmann, München 2003, ISBN 978-3-442-15219-3 Seite 355
  39. Jorio, Marco: Atomwaffen. In: Historisches Lexikon der Schweiz vom 26. November 2002
  40. Die Schweizer Atombombe-Größenwahn eines Kleinstaates? in: beninde.net, abgerufen am 18. Januar 2008
  41. «Notfalls auch gegen die eigene Bevölkerung» in: Tages-Anzeiger vom 28. Januar 2011
  42. Telepolis: Atombombe über Bord!
  43. http://orf.at/stories/2199398/2147509/ Wo Atombomben verschwunden sein sollen, ORF.at vom 28. Oktober 2012, abgerufen am 22. September 2013
  44. http://orf.at/stories/2199398/2199397/ B-52 mit zwei Atombomben abgestürzt (1961), ORF.at vom 22. September 2013
  45. PDF bei www.auswaertiges-amt.de
  46. Meldung vom 15. April 2010
  47. ICAN – Internationale Kampagne für die Abschaffung aller Atomwaffen (ICAN) (eingesehen am 16. Aug. 2009)
  48. Internationale Ärzte für die Verhütung des Atomkrieges/Ärzte in sozialer Verantwortung e.V. (eingesehen am 16. Aug. 2009)
  49. Kampagne „unsere zukunft – atomwaffenfrei“ (eingesehen am 16. Aug. 2009)
  50. Das Parlamentarisches Netzwerk für nukleare Abrüstung und Nichtverbreitung (PNND)(eingesehen am 16. Aug. 2009)
  51. : Entschließung der Mitgliederversammlung vom 5. Oktober 1958 (PDF-Datei; 145 kB). In: Physikal. Blätter. 14, 1958, S. 481.
  52. : Appell zur Beendigung des nuklearen Wettrüstens (PDF-Datei; 131 kB). In: Physikal. Blätter. 39, 1983, S. 132.
  53. : Resolution der Deutschen Physikalischen Gesellschaft zur Abrüstung, insbesondere zum Verbot aller Atomwaffentests (PDF-Datei; 165 kB). In: Physikal. Blätter. 45, 1989, S. 115.
  54. : Stellungnahme der Deutschen Physikalischen Gesellschaft zur Ablehnung der Ratifikation des Atomteststoppvertrages durch den US-Senat (PDF-Datei; 139 kB). 2000.
  55. : Physiker mahnen zur Abschaffung der Atomwaffen. In: Pressemitteilungen der DPG. 2010, S. 12.
  56. http://www.oikoumene.org
  57. http://theol.uibk.ac.at/itl/239.html#80
Dies ist ein als lesenswert ausgezeichneter Artikel.
Dieser Artikel wurde am 16. August 2005 in dieser Version in die Liste der lesenswerten Artikel aufgenommen.