Dies ist ein als exzellent ausgezeichneter Artikel.

Reihe (Mathematik)

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Animation der Konvergenz der Reihe gegen 1. Mit jedem neuen Summanden wird der „Abstand“ zum Grenzwert halbiert.

Eine Reihe, selten Summenfolge oder unendliche Summe und vor allem in älteren Darstellungen auch unendliche Reihe genannt, ist ein Objekt aus dem mathematischen Teilgebiet der Analysis. Anschaulich ist eine Reihe eine Summe mit unendlich vielen Summanden, wie etwa

Man kann Reihen als rein formale Objekte studieren, jedoch sind Mathematiker in vielen Fällen an der Frage interessiert, ob eine Reihe konvergiert, ob also die Summe endlich vieler Summanden durch Hinzunahme hinreichend vieler weiterer Summanden einem festen Wert beliebig nahe kommt. So konvergiert etwa die obige Beispielreihe gegen den Wert (siehe Bild), allerdings existieren auch divergente (also nicht konvergente) Reihen, wie zum Beispiel

Allgemein wird eine Reihe mit bezeichnet, und dies ist, falls existent, gleichzeitig die Bezeichnung für den Grenzwert.

Präzise wird eine Reihe als eine Folge definiert, deren Glieder die Partialsummen einer anderen Folge sind. Wenn man die Zahl 0 zur Indexmenge zählt, ist die -te Partialsumme die Summe der ersten (von den unendlich vielen) Summanden. Falls die Folge dieser Partialsummen einen Grenzwert besitzt, so wird dieser der Wert oder die Summe der Reihe genannt.

Eine systematische Theorie der Reihen findet ihren Ursprung im 17. Jahrhundert, wo sie besonders durch Gottfried Wilhelm Leibniz und Isaac Newton vorangetrieben wurde. Dabei stand sie in enger Verbindung zu anschaulichen Problemen aus der Geometrie, wie der Integration von Kurven. Als formale Objekte wurden Reihen im 18. Jahrhundert von Mathematikern wie Leonhard Euler studiert, der ihnen drei Bände seines Gesamtwerkes, der Opera Omnia, widmete. Erst im 19. Jahrhundert stieß dieser Umgang, der Fragen nach Konvergenz oder Divergenz außen vor ließ, auf Kritik. In einer wegweisenden Schrift aus dem Jahr 1821 legte Augustin-Louis Cauchy das Fundament der bis heute gebräuchlichen „quantitativen“ Theorie unendlicher Reihen und bereitete der rigorosen Aufarbeitung der Analysis, etwa durch Karl Weierstraß, den Weg. Von zentraler Bedeutung in diesem Kontext war das Cauchy-Kriterium für die Charakterisierung des Konvergenzbegriffs. Bis in die heutige Zeit sind Reihen, etwa im Kontext der Zahlentheorie, ein Objekt intensiver mathematischer Forschung.

Für die Untersuchung einer unendlichen Reihe sind vor allen Dingen die Fragen nach ihrer Konvergenz und, wenn diese vorliegt, nach dem Grenzwert von Bedeutung. Für beides existieren keine brauchbaren allgemeinen Methoden. Allerdings wurden Kriterien entwickelt, die in einigen Spezialfällen Antworten liefern.

Besonders bedeutende Anwendungen haben Reihen in der Analysis (zum Beispiel über Taylorreihen zu analytischen Funktionen), den Ingenieurwissenschaften (etwa in der Elektrotechnik und Signalverarbeitung über Fourierreihen), aber auch in der Wirtschaftswissenschaft und Finanzmathematik. Einige bedeutende mathematische Konstanten, etwa die Kreiszahl oder die Eulersche Zahl , konnten mit Hilfe von Algorithmen, die auf unendlichen Reihen fußen, auf viele Billionen Nachkommastellen angenähert werden.

Einführung: Unendliche Summierbarkeit und erste Beispiele[Bearbeiten | Quelltext bearbeiten]

Die Kreiszahl ist irrational und hat damit unendlich viele Nachkommastellen ungleich . Durch Addition der Werte und mit der -ten Nachkommastelle lässt sie sich als Reihe darstellen.

Unter einer Reihe versteht man, veranschaulicht, eine niemals endende Summe von Zahlen. Die Dezimalschreibweise einer reellen Zahl kann zum Beispiel als Reihe aufgefasst werden, etwa

oder auch mit der Kreiszahl :

Die durch die Punkte angedeuteten Summen enden niemals, da die Dezimalentwicklung von periodisch und die Kreiszahl irrational ist. Es gibt Reihen, denen kein Wert zugeordnet werden kann, etwa

aber auch solche, die gegen einen Grenzwert konvergieren (wie die obigen Beispiele mit Grenzwerten bzw. ).

Darüber hinaus treten Reihen in vielen Bereichen der Mathematik auf und besitzen zahlreiche Anwendungsmöglichkeiten. Klassischerweise treten sie dann in Erscheinung, wenn mathematische Terme beliebig gut angenähert werden sollen oder die Entwicklung (theoretisch) nicht endender Prozesse analysiert wird. Auch in der Physik spielen Reihen eine wichtige Rolle. Eine einfache „Anwendung“ kann über das klassische Paradoxon von Achilles und der Schildkröte gegeben werden:[1]

Graphische Veranschaulichung des Paradoxons (hinsichtlich des Beispiels nicht maßstabsgetreu)

Der für seine Schnelligkeit bekannte Heros Achilles liefert sich einen Wettkampf mit einer Schildkröte. Beide starten von der gleichen Position aus. Jedoch gewährt Achilles, der einhundert Mal schneller als die Schildkröte ist, dieser 100 Meter Vorsprung. Das Paradoxon besagt nun, dass Achilles die Schildkröte niemals einholen wird: Hat nämlich Achilles 100 Meter zurückgelegt, so hat sich die Schildkröte in der Zwischenzeit einen Meter von ihrer bisherigen Position weiter bewegt. Und läuft Achilles nun auch diesen weiteren Meter, so ist ihm die Schildkröte einen weiteren Zentimeter voraus. Und bewegt sich Achilles diesen Zentimeter, so hat die Schildkröte einen Zehntel Millimeter Vorsprung usw.

Das scheinbare Paradoxon entsteht dadurch, dass die Zeit nicht berücksichtigt wurde.[2] Genau genommen ist die Aussage, dass Achilles die Schildkröte niemals aufholen wird, nicht korrekt. Die in dem Paradoxon aufgeführten Zwischenschritte, in denen die Schildkröte stets einen rasch abnehmenden Vorsprung vor Achilles hat, sind allesamt mit Zeitabschnitten verbunden, die jedoch ebenso rasant abnehmen (zum Beispiel dann, wenn Achilles nur noch einen Zentimeter läuft). Brauchte Achilles für die ersten 100 Meter noch „eine Zeiteinheit“, so wird er für einen Meter nur noch „ Zeiteinheiten“ brauchen.[Anm. 1] Im nächsten Schritt braucht er für einen Zentimeter nur noch „ Zeiteinheiten“. Der Zeitpunkt, an dem Achilles und Schildkröte schließlich die gleiche Position haben werden, ist also, da deren Abstände immer weiter abnehmen, gegeben durch die unendliche Reihe

Obwohl also unendlich viele Terme addiert bzw. Zeitabschnitte betrachtet wurden, entsteht im Grenzwert eine endliche Zahl bzw. wird Achilles nach endlicher Zeit, nämlich nach Zeiteinheiten, die Schildkröte einholen.

Elementare Anwendungsbeispiele[Bearbeiten | Quelltext bearbeiten]

Das Konzept der Reihe spielt disziplinübergreifend eine zentrale Rolle in der Mathematik. Hauptanwendungsgebiet ist zunächst die Analysis, jedoch auch alle durch diese Sparte beeinflussten Bereiche, nicht zuletzt angewandte Gebiete wie die Ingenieurwissenschaften.

Annäherung von Funktionen[Bearbeiten | Quelltext bearbeiten]

Es entfalten Reihen ihre Nützlichkeit zum Beispiel dann, wenn es darum geht, bestimmte Funktionen annähernd auszurechnen, die für Anwendungen zwar nützlich, aber dennoch kompliziert sind. Ein besonders berühmtes und zugleich wichtiges Beispiel ist die Darstellung der natürlichen Exponentialfunktion durch ihre Taylorreihe im Punkt :

wobei die Fakultät von bezeichnet. Bemerkenswert ist, dass sich jeder Term auf der rechten Seite durch die vier Grundrechenarten berechnen lässt, was auf nicht mehr zutrifft. Die Konstruktion dieser Reihe motiviert sich aus dem Fakt, dass die (termweise) Ableitung der rechten Seite die Reihe unverändert lässt und diese in den Wert 1 annimmt (was beides auch auf zutreffen „soll“). Für kleine Werte nähert sich diese Reihe relativ schnell dem Grenzwert an und ist dort für eine Berechnung durchaus geeignet. Neben der (punktweisen) Berechnungsmöglichkeit liefert diese Reihendarstellung auch erste Analysemöglichkeiten: Da für alle Terme positiv sind, ist erkennbar, dass die Exponentialfunktion für jede Art polynomiellen Wachstums übersteigen wird, da beliebig hohe Potenzen in der Summation auftreten.

Animation der Approximation des Sinus durch seine Taylorreihe

Ein weiteres Beispiel sind die Winkelfunktionen, etwa der Sinus. Es gibt auch hier kein einfaches, „geschlossenes“ Verfahren, für Eingabewerte den Ausgabewert zu berechnen, aber mittels Reihen können gute Näherungswerte relativ schnell berechnet werden, die in der Praxis ausreichen. Es gilt die Reihenentwicklung[3]

kurz:

Etwa ist und, wegen für alle , als Näherung bis zum -Term

Wahrscheinlichkeitstheorie[Bearbeiten | Quelltext bearbeiten]

Münzwurf mit einer Euromünze

Bei der Untersuchung bestimmter Zufallsexperimente in der Wahrscheinlichkeitstheorie spielen Reihen eine wichtige Rolle. Ein einfaches Beispiel betrifft den „potenziell unendlichen Münzwurf“: Eine faire Münze wird dabei so oft geworfen, bis sie das erste Mal „“ (= Kopf) zeigt. Mit der anderen Option „“ (= Zahl) gibt es damit folgende Möglichkeiten, wie das Experiment endet:

usw.

Da sowohl als auch mit gleicher Wahrscheinlichkeit auftreten, und die Würfe unabhängig ablaufen, haben die zugehörigen Wahrscheinlichkeiten die Werte usw. Da aber gleichzeitig fast sicher irgendeines dieser Ereignisse eintreten muss, folgt

wobei die als die zum fast sicheren Ereignis gehörige Wahrscheinlichkeit („100 %“) zu interpretieren ist.[4] Die besondere Bedeutung der Theorie der Reihen in der Praxis wird in diesem Kontext jedoch beim Übergang zu Erwartungswerten ersichtlich. Um dies zu sehen, hilft es, das obige Experiment als ein Glücksspiel zu deuten, bei dem zum Beispiel stets die Zahl an Euro ausgezahlt wird, die angibt, wie oft „Zahl“ geworfen wurde (also zum Beispiel 3 Euro bei ZZZK) – zu Beginn aber eine Gebühr von 2 Euro verlangt wird. Es muss der Gewinn stets mit der zugehörigen Wahrscheinlichkeit gewichtet werden, und somit beträgt der zu erwartende Gewinn

pro Runde.[5] Die Teilnahme an diesem Glücksspiel ist demnach nicht zu empfehlen, da der Spieler pro Runde durchschnittlich 1 Euro verlieren wird. Für die Grenzwertermittlung der Reihe, die nicht ganz einfach ist, werden Methoden aus der Analysis herangezogen.

Definition und Grundlagen[Bearbeiten | Quelltext bearbeiten]

Begriff[Bearbeiten | Quelltext bearbeiten]

Eine Reihe wird selten Summenfolge[6] oder unendliche Summe[7][8] und vor allem in älteren Darstellungen auch unendliche Reihe genannt.[9]

Für reelle und komplexe Folgen[Bearbeiten | Quelltext bearbeiten]

Ist eine beliebige reelle (oder komplexe) Folge gegeben ( ist die Menge der nichtnegativen ganzen Zahlen und bezeichnet die „ist-Element-von“-Relation), kann man aus ihr eine neue Folge der Partialsummen bilden. Die -te Partialsumme ist die Summe der ersten Glieder von , ihre Definition lautet:

Die Folge der -ten Partialsummen heißt Reihe.

Zu bemerken ist, dass aus der Definition folgt, dass andersherum jede Zahlenfolge zu einer Reihe wird, wenn man diese als Partialsummen der Folge auffasst. Eine Reihe ist also nichts anderes als eine Folge spezieller „Bauart“, deren Glieder rekursiv durch und definiert sind. Allerdings führt die einfache rekursive Struktur der Reihen zu vergleichsweise sehr handlichen Konvergenzkriterien, siehe unten.[10]

Konvergenz und Divergenz[Bearbeiten | Quelltext bearbeiten]

Obwohl Reihen auch als formale Objekte studiert werden können, also „ohne Wert“, sind in der Mathematik die Fälle von besonderem Interesse, in denen sich die Reihe langfristig einem ganz bestimmten Wert annähert. Falls die Reihe , also die Folge der Partialsummen

( ist das Summenzeichen)

konvergiert, so nennt man ihren Grenzwert

den Wert der Reihe[11] oder die Summe der Reihe.[12] Dieser ist eindeutig bestimmt und wird meistens als notiert.[10][Anm. 2] Reihen, die nicht konvergieren, nennt man divergent.

Bildliche Veranschaulichung des Konvergenzprinzips. Um den Grenzwert lassen sich beliebig dünne „Schläuche“ mit Breite legen, und in jedem noch so dünnen Schlauch liegen fast alle Folgeglieder.

Anschaulich bedeutet Konvergenz, dass sich eine Folge auf Dauer einer reellen oder komplexen Zahl beliebig nah annähert. Da der Umgang mit „dem Unendlichen“ zunächst nicht sinnvoll ist, umgeht man diese Schwierigkeit, indem man den Konvergenzbegriff mit endlichen Mitteln erklärt. Die Reihe nennt man dann konvergent gegen den Grenzwert , wenn es zu jeder noch so kleinen Zahl einen Index gibt, sodass für alle noch größeren Indizes

erfüllt ist. Hat eine Reihe etwa den Grenzwert , so besagt die Wahl , dass alle bis auf endlich viele Partialsummen

zwischen und liegen. Ebenso lässt sich mit – ab einem gewissen Index liegen also alle Partialsummen zwischen und – usw. verfahren. In den meisten Fällen ist dieses Kriterium für Konvergenz jedoch nicht brauchbar, da bereits ein Grenzwert bekannt sein muss, um es überhaupt anwenden zu können. Es ist im Allgemeinen jedoch überaus schwierig, den Grenzwert einer konvergenten Reihe anzugeben. Dies kann aber leicht umgangen werden, denn es kann gezeigt werden, dass eine Reihe genau dann konvergiert, wenn es für jede Zahl einen Index gibt, sodass für alle größeren Indizes bereits

gilt.[13] Man bezeichnet dies als das Cauchy-Kriterium, und es kommt ohne Verwendung eines expliziten Grenzwertes aus. Allerdings eignet sich das Cauchy-Kriterium im Rahmen praktischer Konvergenztests von Reihen eher selten. Hierfür sind speziellere, aber dafür leichter handzuhabende Kriterien entwickelt worden, die jedoch nicht allgemeingültig sind (siehe unten). Häufigere Anwendung findet das Cauchy-Kriterium aber innerhalb mathematischer Beweise, etwa wenn aus der Konvergenz einer Reihe eine Schlussfolgerung gezogen werden soll. Ein erstes Beispiel ist die Aussage, dass aus der Konvergenz einer Reihe bereits für folgt, also dass die Folge der Summanden eine Nullfolge bildet. In der Tat, ist beliebig gewählt, folgt mit dem Cauchy-Kriterium, angewandt auf den Spezialfall schon

für alle .

Damit muss gegen 0 konvergieren. Zu beachten ist, dass die Rückrichtung dieser Aussage nicht richtig ist. Dies ist einer der Gründe schlechthin, weshalb die Theorie der unendlichen Reihen so schwierig ist.

In manchen Fällen müssen auch Reihen der Form untersucht werden. Diese heißen konvergent genau dann, wenn die beiden Reihen

konvergieren.[14]

Hinsichtlich divergenter Reihen ist zu beachten, dass das Phänomen der Divergenz keinesfalls mit der Unbeschränktheit der Partialsummen gleichzusetzen ist. So existieren divergente Reihen, deren Partialsummen beschränkt sind, zum Beispiel

Das Themenfeld der Reihenkonvergenz ist bis heute ein schwieriges Gebiet, und es gibt kein allgemeingültiges und zugleich brauchbares Kriterium, um schnell zu entscheiden, ob eine vorgelegte Reihe konvergiert oder divergiert. Ein Grund hierfür ist, dass es keinen „klaren Übergang“ zwischen Konvergenz und Divergenz gibt. So existiert etwa keine „am langsamsten konvergierende Reihe“, und ebenso keine „am langsamsten divergierende Reihe“.[15] Ist etwa mit einer Nullfolge konvergent, so auch , und letztere Reihe konvergiert langsamer als die vorherige. Darüber hinaus zeigte Alfred Pringsheim, dass die Glieder einer konvergenten Reihe keinesfalls mit einer „Mindestgeschwindigkeit“ gegen streben müssen. Es kann sogar jede konvergente Reihe für einen Beweis dieser Behauptung herangezogen werden.[16]

Bedingte und absolute Konvergenz[Bearbeiten | Quelltext bearbeiten]

Konvergenzschema einer alternierenden Reihe, also mit wechselnden Vorzeichen gekoppelt mit monoton gegen Null fallenden Summanden

Es gibt unterschiedliche Arten der Konvergenz. Dies betrifft nicht die Konvergenzdefinition, die stets dieselbe ist, sondern die „Güte“ der Konvergenz. So kann man zwei Typen konvergenter Reihen angeben: jene, die gewissermaßen „stabil“ konvergieren, und solche, bei denen größere Vorsicht zum Nachweis einer Konvergenz geboten ist, etwa bei der Umordnung von Summanden innerhalb der Reihe.

Eine Reihe heißt absolut konvergent, wenn auch die zugehörige Reihe der Absolutbeträge konvergiert. Darin ist die Betragsfunktion.

Durch das Summieren der Beträge werden alle möglichen Vorzeichen bzw. Ausrichtungen der quasi „ignoriert“, was den Nachweis einer Konvergenz erschwert, da dann kein „Wegkürzen“ mehr möglich ist. Etwa ist die alternierende Reihe

konvergent, nicht aber die harmonische Reihe

Es ist ein erstes Beispiel einer bedingt konvergenten Reihe, also einer, die nicht absolut konvergiert.[17] Zudem zeigt das Beispiel der harmonischen Reihe, dass die Eigenschaft der Glieder, eine Nullfolge zu sein, nicht ausreicht, um Konvergenz zu erreichen. Es lässt sich das Nullfolgenkriterium also nicht umkehren.

Aus mathematischer Sicht ist absolute Konvergenz ein Vorteil, da dies das Rechnen mit Reihen vereinfacht. Etwa ist es im Falle bedingter Konvergenz nicht ohne Weiteres erlaubt, die Reihenfolge der Summanden zu ändern, ohne dabei möglicherweise den Grenzwert zu verändern. Damit entfällt bei bedingt konvergenten Reihen das noch für endliche Summen gültige Kommutativgesetz. Im Gegensatz dazu ist es bei absolut konvergenten Reihen unerheblich, in welcher Reihenfolge summiert wird, da der Grenzwert stets derselbe bleibt.[18] Zusätzlich besagt der Riemannsche Umordnungssatz, dass bei einer bedingt konvergenten Reihe mit reellen Gliedern durch Umordnungen jede reelle Zahl als Grenzwert und auch die Divergenz der neu entstehenden Reihe erzwungen werden kann.

Die absolute Konvergenz kann auch auf Multireihen ausgedehnt werden.[19] Konvergiert für jedes , und konvergiert , dann konvergieren die Reihen

  • für jedes ,
  • für jedes ,

und es gilt

.

Geschichte[Bearbeiten | Quelltext bearbeiten]

Anfänge im 17. Jahrhundert[Bearbeiten | Quelltext bearbeiten]

Die Kurve hat dieselbe Länge wie das entsprechende gerade Segment.

Reihen wurden in der Mathematik hauptsächlich eingeführt, um geometrische Probleme zu lösen. Ihre zunächst eher sporadische Verwendung gewann um 1650 an Bedeutung und war zum Beispiel entscheidend für die Entstehung der Infinitesimalrechnung. Besonders zu Zeiten von Isaac Newton und Gottfried Wilhelm Leibniz wurden viele Ergebnisse erzielt, und ein großer Teil des frühen Wissens um die Reihen geht auf sie zurück.[20]

Obwohl Reihen schon früher gelegentlich vorkamen, wurden sie in der Mathematik erst ab dem 17. Jahrhundert wirklich bedeutsam. Ihre Verwendung erfolgte vor allem im Zusammenhang mit dem Problem der Quadratur und der Abmessung von Kurven durch Einteilung in lineare Segmente (siehe auch Rektifizierbarkeit). Im 17. Jahrhundert versuchten die Mathematiker, neue Methoden für die Quadratur gekrümmter Linien zu finden, die die Schwierigkeiten der sogenannten Exhaustionsmethode vermeiden.[21]

Der Geistliche und Mathematiker Pietro Mengoli veröffentlichte 1650 in seinem Werk Novae quadraturae arithmeticae, seu de additione fractionum Resultate bezüglich unendlicher Reihen und baute seine Argumente auf zwei Axiome auf.[22] Unter anderem fand er die Grenzwerte:[23]

Ferner fragte er nach dem Grenzwert der Reihe

blieb bei dessen Suche aber erfolglos. Dieses Problem wurde später von Jakob Bernoulli aufgegriffen, und schließlich als Basler Problem bekannt. Erst Leonhard Euler fand den korrekten Grenzwert mit der Kreiszahl im Jahr 1735 und veröffentlichte ihn in seinem Werk De Summis Serierum Reciprocarum.[24]

Isaac Newton im Jahr 1689

Im Jahr 1666 verfasste Newton eine Schrift De Analysi per Aequationes Numero Terminorum Infinitas, die zwar erst 1711 publiziert wurde, aber zuvor in Manuskriptform Wellen schlug. In dieser entwickelte er das heute als Newtonverfahren bekannte Prinzip, Nullstellen einer Funktion numerisch anzunähern. Er betrachtete den Spezialfall analytischer Funktionen, und es gibt nirgends einen Hinweis darauf, dass er das Verfahren auf geometrische Weise erhalten hat. Er wandte diese Technik auf die Umkehrung von Reihen an und gewann unter anderem dadurch die Reihenentwicklungen für Sinus und Kosinus.[25] Durch Inspiration über das von John Wallis verfasste Werk Arithmetica infinitorum entdeckte er zudem die allgemeine Binomialreihe, in heutiger Notation

die sich zur numerischen Annäherung von Wurzeln eignet. Dies geht aus einem Brief von Newton an Leibniz aus dem Jahre 1676 hervor.[26] Newton hat für sein Theorem jedoch nie einen Beweis geliefert, denn für ihn gab es genug numerische und experimentelle Evidenz.[27]

Fast zur gleichen Zeit, ab 1672, befasste sich Gottfried Wilhelm Leibniz mit der Theorie der unendlichen Reihen. Diese spielte eine wichtige Rolle bei seinen späteren Beiträgen zum Aufbau der Infinitesimalrechnung.[28] Leibniz untersuchte Reihen oft mit einer geometrischen Fragestellung oder Anschauung; Beispiele hierfür sind seine Behandlung der geometrischen Reihe[29] und der berühmten Leibniz-Reihe

die er über die Geometrie des Kreises erklärte.[30]

18. Jahrhundert[Bearbeiten | Quelltext bearbeiten]

Brook Taylor

Im Laufe des 18. Jahrhunderts wurde die hauptsächlich von den gegenseitigen Widersachern Newton und Leibniz initiierte Theorie der unendlichen Reihen systematisch ausgebaut. Einen ersten Höhepunkt erlebte sie durch das Werk Methodus incrementorum von Brook Taylor, das 1715 veröffentlicht wurde. In diesem entwickelte Taylor die heute nach ihm benannte Taylorreihe

systematisch, also die Möglichkeit, eine hinreichend gute Funktion anhand all ihrer Ableitungen in einem Punkt in Umgebung dieses Punktes zu rekonstruieren. Dabei bezeichnet die -te Ableitung der Funktion im Punkt und die Fakultät von . Dieser Ansatz war bereits Newton bekannt gewesen, jedoch hatte er diesbezüglich nur kurze Ausführungen geliefert und es bleibt unklar, ob er die Wichtigkeit der Potenzreihen richtig einschätzte.[31] Diese wurde in den folgenden Jahren jedoch zunehmend erfasst. Abraham de Moivre bewies einen Satz über Potenzreihen zu rekursiven Folgen und erkannte, wie andere Mathematiker dieser Zeit, dass diese eng mit sogenannten charakteristischen Polynomen der entsprechenden Rekursion zusammenhingen. Etwa gab Daniel Bernoulli 1728 mit deren Hilfe eine geschlossene Formel für die sonst nur über eine Rekursion definierte Fibonacci-Folge an.[32]

James Stirling argumentierte in seiner 1730 publizierten Methodus differentialis, dass langsam konvergente Reihen „ebenso unnütz“ wie divergente Reihen seien, und präsentierte Verfahren, um die Konvergenz gewisser Reihen zu beschleunigen.[33] Diese sollten auch dazu dienen, die Werte gewisser endlicher Summen schnell ausrechnen oder zumindest approximieren zu können. Unter seinen Entdeckungen fand sich auch die nach ihm benannte Stirlingformel, welche die Fakultät einer natürlichen Zahl über einen asymptotischen Reihenausdruck sehr schnell für große annähert.[34] Die 1742 von Colin Maclaurin veröffentlichte und zeitgleich auch von Leonhard Euler entdeckte und genutzte Euler-Maclaurin-Formel, die die Arbeiten von Newton zur geometry of fluxions aufgriff,[35] ging in eine ähnliche Richtung.[36] Mit ihrer Hilfe konnte Maclaurin neue Beweise zu Aussagen von Newton und Stirling über Taylorreihen anfertigen und die Reihenkonvergenz durch seinen neuartigen Zugang in einigen Fällen beschleunigen.[37]

Leonhard Euler

Besonders wichtige Beiträge zur Theorie der Reihen lieferte jedoch Leonhard Euler. Sie galten als eines seiner Lieblingsthemenfelder, und alleine drei Bände seiner Opera Omnia sind ihnen gewidmet.[38] Zahlreiche bedeutende Entdeckungen Eulers fußen letztlich auf seiner Intuition. Darunter fallen seine Verallgemeinerung der Fakultät über die Gammafunktion,[39] die Lösung des Basler Problems und zahlreiche weitere gefundene Grenzwerte bestimmter Reihen, wie etwa[40]

(die Nenner sind „perfekte Quadrate minus 1, die selbst auch andere Potenzen sind“, etwa usw.)[41]

sowie seine Entdeckung der Euler-Maclaurin-Formel im Jahr 1732 (Beweis 1736).[42] Euler zog praktischen Nutzen aus dieser Formel, um unendliche Reihen, die langsam konvergieren, schnell numerisch anzunähern. So gab er gute Näherungen für die Werte und , wobei die Riemannsche Zeta-Funktion bezeichnet, und fand auf 20 Stellen genau:

Erwiesenermaßen etablierte Eulers ursprüngliche Methode der Berechnung von für höhere Werte von die numerische Mathematik als ein neues Forschungsgebiet.[43] Neuartig war auch sein Zugang zur Zahlentheorie über unendliche Reihen. Mit dem sog. Satz von Euler zeigte er, dass

gilt und deutete sein Resultat dahingehend, dass Primzahlen dichter in den natürlichen Zahlen liegen müssten als Quadratzahlen. Es war zudem Euler, der als erster divergente Reihen systematisch untersuchte.[44] Dabei entging Euler jedoch keinesfalls die Problematik, welche die Zuweisung eines Summenwertes zu einer divergenten Reihe mit sich bringen konnte. So hatte schon Guido Grandi aus

die Gleichheit abgeleitet, und damit die Möglichkeit der Erschaffung der Welt aus dem Nichts „bewiesen“. Später bemerkte man weitere Widersprüche, die durch das unbedarfte Rechnen mit divergenten Reihen entstehen können.[45] Obwohl Euler für seinen Umgang mit divergenten Reihen kritisiert wurde, wird ihm bis heute ein sehr intuitiver Zugang zugestanden. So konnte er einige korrekte Resultate mit dessen Hilfe entdecken, und seine Intuition nahm Ideen aus der Theorie der Limitierungsverfahren, die den Umgang mit divergenten Reihen ab dem 19. Jahrhundert systematisch formalisierte, vorweg.[46]

Nach 1760 entwickelte sich die Theorie der unendlichen Reihen schließlich maßgeblich in die Richtung, die Euler vorgegeben hatte. Der formale Zugang (es wurden etwa Fragen der Konvergenz oft ignoriert, und Terme wurden abstrakt umgeformt) bereitete vielen bemerkenswerten Resultaten den Boden, etwa der Lagrangeschen Inversionsformel, 1768 gezeigt von Joseph-Louis Lagrange in seiner Nouvelle méthode pour résoudre les équations littérales par le moyen des séries,[47] und der Theorie erzeugender Funktionen von Pierre-Simon Laplace.[48] Im Jahr 1797 konnte Lagrange schließlich die Theorie der analytischen Funktionen konstruieren mit dem Ziel, die Differentialrechnung rein durch formale Betrachtungen aufzubauen.[49]

19. Jahrhundert[Bearbeiten | Quelltext bearbeiten]

Augustin-Louis Cauchy

Zu Beginn des 19. Jahrhunderts fand die formale Herangehensweise an die Theorie der unendlichen Reihen, also etwa jenseits von Fragen der Konvergenz, zunehmend Ablehnung. Ziel war es, zu einem „quantitativen Verständnis“ von Reihen zu gelangen. Die erste Arbeit in diese Richtung stammt von Carl Friedrich Gauß aus dem Jahr 1813. Zuvor hatte Joseph Fourier bereits Reihen trigonometrischer Funktionen untersucht, dabei aber einen anderen Ansatz gewählt als vorher Euler und Lagrange. Schließlich gab Augustin-Louis Cauchy die erste systematische Abhandlung eines rein quantitativen Zugangs zur Theorie der Reihen im Jahr 1821. Ein wesentlicher Grund, weshalb die formale Herangehensweise nicht mehr breite Akzeptanz fand, war, dass sie an einen Punkt gelangt war, an der die Analysis nicht weiter wachsen konnte.[50] Cauchy erklärte dazu:

„Was die Methoden anbelangt, so habe ich mich bemüht, ihnen die ganze Strenge zu geben, die man in der Geometrie braucht, um niemals auf die Argumente zurückgreifen zu müssen, die aus der Allgemeinheit der Algebra stammen. Derartige Begründungen, die zwar allgemein anerkannt sind, insbesondere beim Übergang von konvergenten zu divergenten Reihen und von reellen Größen zu imaginären Ausdrücken, können, wie mir scheint, nur manchmal als Induktionen betrachtet werden, die geeignet sind, die Wahrheit darzustellen, die aber wenig geeignet sind, die in den mathematischen Wissenschaften so gepriesene Exaktheit zu erreichen. Gleichzeitig muss man feststellen, dass sie dazu neigen, den algebraischen Formeln eine unbestimmte Ausdehnung zuzuschreiben, während in Wirklichkeit der größte Teil dieser Formeln nur unter bestimmten Bedingungen und für bestimmte Werte der in ihnen enthaltenen Mengen existiert. Indem ich diese Bedingungen und Werte bestimme und den Sinn der von mir verwendeten Bezeichnungen genau festlege, lasse ich jede Ungewissheit verschwinden; und dann handelt es sich bei den verschiedenen Formeln um nichts anderes als um Beziehungen zwischen reellen Größen, Beziehungen, die immer leicht zu überprüfen sind, wenn man die Größen selbst durch Zahlen ersetzt. Um diesen Prinzipien treu zu bleiben, war ich zugegebenermaßen gezwungen, mehrere Vorschläge zu akzeptieren, die auf den ersten Blick etwas hart erscheinen. Zum Beispiel: Eine divergente Reihe hat keine Summe.“

Augustin-Louis Cauchy[51]

Im weiteren Verlauf verlagerte sich der Forschungsschwerpunkt entsprechend auf den „quantitativen Umgang“ mit Reihen, der sich in vielerlei Hinsicht als schwieriger und gleichzeitig fruchtbarer erwies. So kam die Frage nach Kriterien auf, wie man entscheiden könnte, ob eine unendliche Reihe überhaupt konvergiert. Beiträge in diese Richtung stammen unter anderem von Niels Henrik Abel, Augustin-Louis Cauchy, Peter Gustav Lejeune Dirichlet und Carl Friedrich Gauß. In dieser Zeit machten sich auch Cauchy und Karl Weierstraß um den Aufbau der modernen Funktionentheorie verdient. Besonders Weierstraß verwendete dafür systematisch eine moderne, bis heute gebräuchliche Theorie der Potenzreihen.[52] In seinem 1859 verfassten Artikel Über die Anzahl der Primzahlen unter einer gegebenen Grösse.[53] nutzte Bernhard Riemann diese „strenge“ Funktionentheorie, um Primzahlen zu untersuchen. Die Schwierigkeit lag darin, der Reihe

auch außerhalb ihres Konvergenzbereichs einen „quantitativen Sinn“ zu geben.[54] Zuvor hatte Euler ebenfalls diese sogenannte Zeta-Funktion studiert, jedoch nur als formales Objekt und nicht über den komplexen Zahlen, weshalb ihm strenge Beweise, etwa für ihre Funktionalgleichung, verwehrt geblieben waren. Auch wurden die Unterschiede zwischen bedingter und absoluter Konvergenz herausgearbeitet. So zeigte Riemann im Jahr 1866 den Riemannschen Umordnungssatz.[55] Auch konnten mit Hilfe der Reihen pathologische Beispiele in der Analysis konstruiert werden. Karl Weierstraß zeigte 1872, dass die Weierstraß-Funktion

, mit und mit

in zwar überall stetig, aber nirgends differenzierbar ist.[56]

Die Theorie der divergenten Reihen wurde jedoch nicht gänzlich verworfen. War sie von Cauchy und Abel noch als „Erfindung des Teufels“ gebrandmarkt worden, lieferte ironischerweise der Abelsche Grenzwertsatz einen Grundstein für eine moderne und widerspruchsfreie Theorie der Limitierungsverfahren divergenter Reihen, die ab der zweiten Hälfte des 19. Jahrhunderts von Émile Borel und Ferdinand Georg Frobenius vorangetrieben wurde.[57]

20. Jahrhundert bis heute[Bearbeiten | Quelltext bearbeiten]

Im Laufe des 20. Jahrhunderts wurde unter anderem eine „strenge“ Theorie der divergenten Reihen, unter Vorbehalt gewisser Voraussetzungen, aufgebaut. Bei diesen Limitierungsverfahren wird, unter Berücksichtigung des quantitativen Verständnisses von Reihen, durch Limesbildung der Konvergenzbegriff verallgemeinert, sodass die Klasse „konvergenter Reihen“ ausgedehnt wird.[58] Der Autodidakt Srinivasa Ramanujan hatte 1910 unter anderem durch die Behauptung

Srinivasa Ramanujan

für Aufmerksamkeit gesorgt, wobei neben weitestgehender Ablehnung (wegen der offensichtlichen Divergenz der Reihe zur linken Seite) der Brite Godfrey Harold Hardy darin eine korrekte „Auswertung“ des Funktionswertes mit der Riemannschen Zeta-Funktion wiedererkannte (siehe auch Summe aller natürlichen Zahlen). Ramanujan hatte, ähnlich wie Leonhard Euler, eine gute Intuition für Limitierungsverfahren gehabt, und damit einige tiefe Resultate vorhergesagt, ohne dafür strenge Beweise anzugeben.[59] Zu seinen zahlreichen Entdeckungen gehörten Reihenformeln wie[60]

und auch[61]

und bezeichnen respektive den Sinus hyperbolicus, Cosinus hyperbolicus, Kotangens und den Kotangens hyperbolicus, bezeichnet die Eulersche Zahl.

Der Ramanujanexperte Bruce Berndt wies darauf hin, dass unter den Veröffentlichungen im 20. Jahrhundert, die durch Ramanujan vorhergesagte Formeln im Nachhinein bewiesen, ein Großteil zum Thema der unendlichen Reihen gehörte.[62]

Konvergenzklassen in der Theorie der Limitierungsverfahren wurden als unterschiedlich groß erkannt. Zum Beispiel wurde bereits von Abel gezeigt, dass, falls konvergiert, auch der Grenzwert

existieren muss. Die Umkehrung dieses Resultats ist jedoch nicht richtig: Es existieren Reihen, die sich im obigen Sinne limitieren lassen mit divergenter Reihe . Das Resultat Abels, das also eine Konvergenzklasse, nämlich die „klassische Konvergenz“, in eine größere Klasse einbettet, ist Spezialfall eines Abelschen Theorems. Sätze, die hinreichende Bedingungen für Umkehrungen von Abelschen Sätzen herausarbeiten, wurden durch Arbeiten von Alfred Tauber initiiert.[63] Tauber zeigte, dass, falls existiert und , die Reihe konvergieren muss. Die sogenannten Tauber-Theoreme spielen bis heute in der Zahlentheorie, etwa beim Beweis des Primzahlsatzes, eine bedeutende Rolle.[64] Besonders Godfrey Harold Hardy und John Edensor Littlewood griffen die Ideen Taubers auf und verallgemeinerten sie. Im Jahr 1949 erschien Hardys Buch mit dem Titel Divergent Series.[65]

Auch in der Theorie der Fourierreihen wurden weitere Erfolge erzielt. 1923 konstruierte Andrei Nikolajewitsch Kolmogorow eine -integrable Funktion, deren Fourierreihe fast überall divergiert.[66] Dies widersprach Vermutungen seines Lehrers Nikolai Nikolajewitsch Lusin, der die punktweise Konvergenz solcher Fourierreihen vermutete. Für quadratintegrable Funktionen (Klasse ) vermutete man ebenfalls lange, dass sich Gegenbeispiele finden lassen würden, bis Lennart Carleson 1966 Lusins Vermutung für diese Klasse bewies.[67]

Im weiteren Verlauf des 20. Jahrhunderts wurden Reihen verstärkt auch in formalen algebraischen Rahmen, also jenseits von Konvergenzfragen, als abstrakte Strukturen untersucht. So formen etwa die formalen Potenzreihen mit Koeffizienten in einem Ring zusammen mit komponentenweiser Addition und dem Cauchyprodukt einen Ring .[68] Häufig wird die Wahl getroffen. In diesem Fall ist sogar faktoriell.[69] Im Jahr 1959 konnten E. D. Cashwell und C. J. Everett zeigen, dass der Ring der formalen Dirichletreihen isomorph zu einem Potenzreihenring mit abzählbar vielen Veränderlichen, und damit insbesondere faktoriell, ist.[70] Ferner erwies sich der „algebraische“ Umgang mit Reihen auch für die Kombinatorik von großem Nutzen. Diese Initiative wurde unter anderem von George Andrews seit den 1970er Jahren vorangetrieben, der zahlreiche kombinatorische Fragen, etwa zu den Partitionen, durch Reihenumformungen beantworten konnte, und an einem systematischen Ausbau der Theorie sogenannter „-Reihen“ maßgeblich beteiligt war.[71][72] Allerdings waren derartige Ansätze bereits zu den Zeiten Leonhard Eulers bekannt, der unter anderem den Pentagonalzahlensatz bewies.[73]

Bis zum heutigen Tage sind Konvergenzfragen von Reihen von höchster Bedeutung und keinesfalls gelöst. So wird etwa die Riemannsche Vermutung, eines der sieben Millennium-Probleme, auf dessen Lösung der Preis von 1 Million US-Dollar ausgesetzt ist, von der Konvergenz der Reihe

für alle Werte impliziert.[74] Dabei hängt die Möbiusfunktion eng mit der Verteilung der Primzahlen zusammen. Bis dato ist lediglich Konvergenz für und die Tatsache

bekannt, was äquivalent zum Primzahlsatz ist.[75]

Rechnen mit Reihen[Bearbeiten | Quelltext bearbeiten]

Im Gegensatz zu gewöhnlichen (endlichen) Summen gelten für Reihen einige übliche Regeln der Addition nur bedingt. Man kann also nicht bzw. nur unter bestimmten Voraussetzungen mit ihnen wie mit endlichen Summenausdrücken rechnen. Es stellen sich grundsätzlich die Fragen:

  • Wie kann man Reihen addieren, und wie wirkt sich das auf Konvergenz und Grenzwerte aus?
  • Wie kann man Reihen multiplizieren, und wie wirkt sich das auf Konvergenz und Grenzwerte aus?

Summen und Vielfache[Bearbeiten | Quelltext bearbeiten]

Man kann konvergente Reihen gliedweise addieren, subtrahieren oder mit einem festen Faktor (aber nicht einer anderen Reihe) multiplizieren (vervielfachen). Die resultierenden Reihen sind ebenfalls konvergent, und ihr Grenzwert ist die Summe bzw. Differenz der Grenzwerte der Ausgangsreihen bzw. das Vielfache des Grenzwertes der Ausgangsreihe. D. h.:

,

wenn und .[76]

Produkte[Bearbeiten | Quelltext bearbeiten]

Man kann absolut konvergente Reihen gliedweise miteinander multiplizieren. Die Produktreihe ist ebenfalls absolut konvergent und ihr Grenzwert ist das Produkt der Grenzwerte der Ausgangsreihen. D. h.:[77]

Da die Schreibweise (auf der linken Seite der Gleichung) der Produktreihe mit zwei Indizes in bestimmten Zusammenhängen „unhandlich“ ist, wird die Produktreihe auch in Form des Cauchyprodukts geschrieben. Der Name ergibt sich daraus, dass die Glieder der Produktreihe mit Hilfe des Cauchyschen Diagonalverfahrens gebildet werden, dabei werden die Glieder der Ausgangsfolgen in einem quadratischen Schema paarweise angeordnet, und die (durchnummerierten) Diagonalen dieses Schemas bilden die Produktglieder. Für die Produktreihe braucht man dann nur noch einen einzelnen Index. Die Produktreihe hat dann die folgende Form:

Der Satz von Mertens besagt, dass das Produkt beider Reihen und auch noch dann gegen das Produkt der Grenzwerte konvergiert, wenn mindestens eine der beiden Reihen absolut konvergiert.[78] Es konvergiert die Reihe mit genau dann für alle konvergenten , falls absolut konvergiert.[79]

Anwendungen haben Reihenprodukte zum Beispiel beim Nachweis von Funktionalgleichungen. Setzt man etwa

so konvergiert die betroffene Reihe für alle absolut. Mit dem binomischen Lehrsatz erhält man für und :

Damit folgt mit dem Cauchyprodukt für alle

was die Funktionalgleichung der Exponentialfunktion ist.[80]

Rechnen innerhalb der Reihe[Bearbeiten | Quelltext bearbeiten]

Klammerung (Assoziativität)[Bearbeiten | Quelltext bearbeiten]

Man kann innerhalb einer konvergenten Reihe die Glieder beliebig durch Klammern zusammenfassen. Man kann also beliebig viele Klammern in den „unendlichen Summenausdruck“ einfügen, man darf sie nur nicht innerhalb eines (aus mehreren Termen zusammengesetzten) Gliedes setzen. Der Wert der Reihe ändert sich durch die zusätzlich eingefügte Klammerung dann nicht.

Dies gilt für divergente Reihen im Allgemeinen nicht, was man leicht am folgenden Beispiel erkennt: Die Reihe

divergiert, während die beklammerte Reihe

gegen Null konvergiert und die anders beklammerte Reihe

gegen noch eine andere Zahl konvergiert.[81]

Andererseits kann man aber keine Klammern ohne Weiteres weglassen. Man kann das aber immer dann, wenn die resultierende Reihe wieder konvergent ist. In diesem Falle bleibt auch der Reihenwert unverändert: Sind die Glieder einer konvergenten Reihe selbst in Summenform (mit und ), so „darf“ man die sie umschließenden Klammern genau dann weglassen, wenn die dadurch entstehende neue Reihe wieder konvergiert.[81]

Umordnung (Kommutativität)[Bearbeiten | Quelltext bearbeiten]

Eine Umordnung einer Reihe wird durch eine Permutation ihrer Indexmenge dargestellt. Ist die Indexmenge zum Beispiel die Menge der natürlichen Zahlen mit Null und eine bijektive Abbildung der natürlichen Zahlen auf sich, so heißt

eine Umordnung der Reihe[82]

Man kann konvergente Reihen unter Beibehaltung ihres Wertes dann und nur dann beliebig umordnen, wenn sie unbedingt bzw. absolut konvergent sind. Es gilt für unbedingt (oder absolut) konvergente Reihen:

für alle bijektiven .

Bedingt konvergente Reihen dürfen zur Erhaltung des Grenzwerts nur endlich umgeordnet werden, d. h. ab einem gewissen Index muss für die Umordnung gelten. Der Riemannsche Umordnungssatz sagt aus, dass durch geeignete Umordnung einer fixierten, bedingt konvergenten Reihe reeller Zahlen jeder reelle Grenzwert erreicht werden kann.[83]

Reihen von Funktionen[Bearbeiten | Quelltext bearbeiten]

Allgemeines[Bearbeiten | Quelltext bearbeiten]

Ein zentrales Problem der Analysis besteht darin, „komplizierte“ Funktionen zu studieren. Dabei bedeutet „kompliziert“ zum Beispiel, dass die Rechenvorschrift nicht aus einer endlichen Abfolge aus Anwendungen der vier Grundrechenarten besteht. Eine in diesem Sinne „einfache“ Vorschrift wäre: Nimm die Eingangszahl mal Zwei, dann das Ergebnis plus Eins, multipliziere dies mit sich selbst, teile dann alles durch die Drei. In Kurzform: . Jedoch lassen sich sehr viele Phänomene in der Natur nicht so einfach beschreiben. Die Mathematik ist demnach bestrebt, Analyseverfahren nichttrivialer Funktionen zu entwickeln. Solche Verfahren kommen in den unterschiedlichsten Bereichen innerhalb der Mathematik und auch ihrer Anwendungen zum Einsatz.

Haben die betrachteten Funktionen Zielmengen , in denen nicht gerechnet werden kann, so ist keine Darstellung als unendliche Reihe möglich.

Eine naheliegende Möglichkeit, „komplizierte“ Funktionen zu konstruieren und untersuchen, ist, sie als Reihe von Funktionen zu schreiben, wobei jeder einzelne Summand in der Praxis „einfache Eigenschaften“ besitzt:[84]

Anstatt also Folgen von Zahlen kann man auch Folgen von Funktionen betrachten und entsprechend Reihen definieren. Zudem ist zu beachten, dass im Darstellungsbereich alle notwendigerweise an allen Stellen aus dem Definitionsbereich von definiert sein müssen. Ferner muss im Zielbereich der Funktionen die Addition von Termen definiert sein, da sonst keine sinnvolle Reihe gebildet werden kann.

Eigenschaften der Grenzfunktionen[Bearbeiten | Quelltext bearbeiten]

Zudem kommt zur Frage der Konvergenz noch die nach den Eigenschaften der Grenzfunktion hinzu. Meistens wird gefragt: „Falls die einzeln betrachtet alle stetig/differenzierbar/integrierbar sind, ist es auch die Funktion ?“ Antworten bzw. hinreichende Entscheidungskriterien auf diese Fragen, liefern Sätze aus der Analysis. Häufig nützt es zum Beispiel, wenn die Funktionenreihe nicht nur in jedem Punkt gegen die Grenzfunktion konvergiert, sondern im Definitionsbereich sogar gleichmäßige Konvergenz vorliegt. In einem solchen Fall ist, falls die alle stetige Funktionen waren, auch die Grenzfunktion stetig.[85] Ähnliche Voraussetzungen gelten für Beschränktheit (falls alle Partialsummen beschränkt sind),[86] Differenzierbarkeit und Integrierbarkeit der Grenzfunktion, falls alle Summanden die entsprechenden Eigenschaften haben. Im Gebiet der gleichmäßigen Konvergenz darf eine Reihe gliedweise integriert werden; ebenso darf sie gliedweise differenziert werden, sofern die entstehende Reihe gleichmäßig konvergiert:[87]

Es gibt auch hinreichende Kriterien für die Holomorphie der Grenzfunktion. Genauer lässt sich der Weierstraßsche Konvergenzsatz auf unendliche Reihen anwenden:[88] Ist eine Folge holomorpher Funktionen, so konvergiert gegen eine holomorphe Funktion , falls sie in normal konvergiert, d. h. für jeden Punkt gibt es eine Umgebung , sodass

Umgekehrt kann man fragen, durch welche Reihe sich eine Funktion darstellen lässt. So eine Darstellung nennt sich Reihenentwicklung. Es existieren je nach Kontext verschiedene relevante Reihenentwicklungen für gewisse Klassen von Funktionen.

Typen von Funktionenreihen[Bearbeiten | Quelltext bearbeiten]

Potenzreihen, Taylorreihen und analytische Funktionen[Bearbeiten | Quelltext bearbeiten]

Bei analytischen Funktionen wird eine Funktion um einen „Definitionspunkt“ herum über Polynome angenähert. Eine Möglichkeit, dies zu realisieren und zu verstehen, besteht darin, die Funktion zunächst sehr stark einzuschränken, also nur Eingabewerte aus einem sehr „kleinen“ Vorrat einzusetzen. Klein bedeutet in diesem Kontext, dass die betrachteten Eingabewerte sehr nahe beieinander liegen. Soll eine Funktion etwa um 0 herum studiert werden, würden Werte wie 0,000001 vielleicht noch in Betracht gezogen, möglicherweise aber nicht mehr 1, geschweige denn 100. In diesem Kontext nennt man die 0 auch den Entwicklungspunkt. Hinter diesem Prinzip steckt eine gewisse Form der „Stetigkeit“: Wurde eine analytische Funktion im Punkt 0 gut verstanden, so lässt sich daraus schon auf ihr Verhalten in zum Beispiel 0,000001 schließen, und das nur anhand der vier Grundrechenarten. Präziser wird die Annäherung über Polynome realisiert, also Ausdrücke wie , und ganz allgemein

Eine analytische Funktion kann also um jeden Wert ihres Definitionsbereichs durch Anwendung der Grundrechenarten entwickelt werden. Dabei ist zu beachten, dass es sich bei hinreichend „komplizierten“ Funktionen nur um eine Näherung handelt. Eine zentrale Eigenschaft der Analytizität ist aber, dass für solche komplizierten Funktionen beliebig lange Polynomketten, also addierte -Terme, zur Annäherung gefunden werden können. Je länger diese Terme sind, desto besser. Lässt man diesen Prozess gegen Unendlich streben, ist die Annäherung in den umliegenden Punkten perfekt, es herrscht also Gleichheit. In diesem Sinne sind also analytische Funktionen, zumindest lokal, gerade „unendlich lange Polynome“. Diese werden auch als Potenzreihen bezeichnet. Obwohl dabei unendlich viele Terme addiert werden, kann Konvergenz vorliegen, wenn das Funktionsargument nahe genug am Entwicklungspunkt liegt. Wählt man zum Beispiel den Entwicklungspunkt 0 und für die Koeffizienten die Dezimalstellen der Kreiszahl , also

so gilt

Für Werte wird dann „erst recht“ endlich sein. Diesem Gedanken folgend kann man etwa über das Majorantenkriterium (siehe unten) zeigen, dass Potenzreihen entweder überall oder innerhalb von Intervallen (für komplexe Zahlen Kreisscheiben) mit dem Entwicklungspunkt als Zentrum konvergieren.

Sinus und Kosinus bilden die Länge eines Kreisbogens auf die Länge zweier gradliniger Lote ab. Zu beachten ist, dass die Kreisbogenlänge b eigentlich der krummen „Strecke“ zwischen den Punkten A und B (sprich b = OAB) entspricht. Wegen der Wahl Radius = r = 1 beträgt der volle Kreisumfang Längeneinheiten, was auch im dimensionslosen Maß genau 360 Grad entspricht und damit eine Identifizierung des Kreisbogens mit dem einschließenden Winkel erlaubt.

Beispiel: Eine in der Schule behandelte Funktion, die sich im Allgemeinen nicht durch nur endlichfache Anwendung der vier Grundrechenarten berechnen lässt, ist der Sinus, also die Vorschrift . Hier wird die Vorschrift zunächst nicht über eine Zahlenrechnung, sondern geometrisch erklärt. Zur Länge eines Kreisbogens soll die zugehörige gerade Strecke gefunden werden, die den Endpunkt des Bogens mit der Grundachse verbindet, analog beim Kosinus (siehe Bild). Alle betrachteten Strecken haben Längen, im Verhältnis zur Einheit dimensionslos, also entspricht dies einer Abbildung von Zahlen auf Zahlen. Krumme Kreislinien („komplizierte Strecken“) werden auf ungleich lange gerade Linien („einfache Strecken“) abgebildet, was vermuten lässt, dass sich diese Umrechnung nicht in einfacher Weise mit den vier Grundrechenarten darstellen lässt. Es zeigt sich jedoch, dass der Sinus eine analytische Funktion ist, weshalb eine Annäherung durch einfache Terme möglich ist. Es gilt zum Beispiel für sehr kleine Werte von

Dies entspricht einem „Studium“ der Sinusfunktion in oben erklärtem Sinne, da die komplizierte Sinusfunktion durch eine einfache Abbildung angenähert wurde. Dabei war der Entwicklungspunkt 0, in der Tat ist wegen die Annäherung hier perfekt, doch auch für umliegende Werte ist sie brauchbar. Es gilt zum Beispiel und . Zur exakten Berechnung erhält man für den Sinus[89]

wobei die Fakultät bezeichnet. Die Formel erweitert sich auch auf alle komplexen Zahlen und setzt den Sinus dort als holomorphe Funktion fort, wobei dort keine geometrische Interpretation über Dreiecke mehr zur Verfügung steht, aber im Gegenzug die enge Verbindung zur komplexen Exponentialfunktion deutlicher wird.

Über das Beispiel des Sinus erklärt sich auch das allgemeine Verfahren zum Aufstellen einer Taylorreihe zu einer analytischen Funktion . Wird als Entwicklungspunkt gewählt, so gilt die Formel

mit -te Ableitung von an der Stelle ,

für alle , die nahe genug an liegen. Dabei bezeichnet die -te Ableitung von an der Stelle . Genau genommen muss gelten, wobei die Zahl den Konvergenzradius der Taylorreihe bezeichnet.[90] Ist der Entwicklungspunkt , spricht man gelegentlich auch von einer Maclaurinschen Reihe.[91] Sind auch negative ganzzahlige Exponenten von vorhanden, verallgemeinert sich das Konzept zu Laurent-Reihen.

Beispiel: Approximation der Zahl   

Taylorentwicklungen lassen sich zum Beispiel an der Wurzelfunktion demonstrieren, etwa um den Punkt . Diese ist dort analytisch, man hat die Ableitungen und . Also gilt mit der Taylor-Formel die Approximation

für Zahlen , die nahe an liegen. Der Ausdruck auf der rechten Seite kann, wie oben, durch Anwendung nur der vier Grundrechenarten schnell berechnet werden. Er stimmt nach Einsetzen von exakt mit dem Funktionswert überein, doch auch in der näheren Umgebung von ist die Annäherung noch sehr genau. Man hat etwa

und es gilt für den exakten Wert .

Die Theorie der analytischen Funktionen wird erst über den komplexen Zahlen vollständig erfassbar. Hier spricht man synonym von holomorphen Funktionen und es gilt der Cauchysche Entwicklungssatz: Ist mit offenem , die größte Kreisscheibe um in und holomorph, so ist um in eine Taylorreihe entwickelbar, die in auf kompakten Teilmengen absolut und gleichmäßig konvergiert. Die Koeffizienten sind gegeben durch[92]

, wobei

Dabei wird der Integrationsweg in mathematisch positiver Richtung einfach durchlaufen. Bemerkenswert ist die Tatsache, dass für den Beweis des Entwicklungssatzes lediglich die Reihenentwicklungen der Funktionen benötigt werden (siehe auch geometrische Reihe) sowie Vertauschbarkeit von Summation und Integration. Für den Fall wurde dies bereits 1831 von Cauchy durchgeführt.[93]

Da jede holomorphe Funktion analytisch ist und umgekehrt, lassen sich Eigenschaften von Potenzreihen direkt auf holomorphe Funktionen übertragen. Dies stellt gleichzeitig den Weierstraßschen Zugang zur Funktionentheorie dar, der die Darstellbarkeit von Funktionen als Potenzreihen zum Ausgangspunkt hat.[52]

Potenzreihen können auch als sog. Lambertreihen geschrieben werden.

Fourierreihen[Bearbeiten | Quelltext bearbeiten]

Als Fourierreihe einer Funktion bezeichnet man ihre Entwicklung nach trigonometrischen Funktionen. Dies betrifft vornehmlich periodische Funktionen, also Funktionen, die sich intervallweise immer wieder in ihrem Abbildungsverhalten wiederholen. Da eine Normierung der Periode durch entsprechende Skalierung im Funktionsargument erreicht werden kann, genügt es, sich -periodische Funktionen anzuschauen, also solche mit der Eigenschaft .

Fourierreihen spielen eine Rolle bei der Überlagerung von Wellen, zum Beispiel bei der Erzeugung von Klängen. Erklingen mehrere Töne gleichzeitig, etwa bei einem Musikstück, so entspricht dies physikalisch einer Überlagerung verschiedener Schallwellen. Um die Gesamtsituation zu erfassen, ist die Addition der entsprechenden (nach Phase und Amplitude skalierten) Sinuskurven erforderlich. Gewisse periodische Signale, zum Beispiel in der Elektrotechnik, haben jedoch ein derart komplexes Muster, dass eine unendliche Anzahl verschiedener Sinuswellen benötigt wird, um sie exakt darzustellen.

Animation der Approximation des Sägezahnsignals durch sich überlappende Sinuskurven

Ist eine -periodische Funktion, etwa ein Signal, gegeben, so ist eine Entwicklung in eine Fourierreihe (zumindest formal) dann möglich, wenn auf dem Interval integrierbar ist. In diesem Fall macht es Sinn, den -ten Fourierkoeffizienten über die Formel

zu definieren. Es ist dabei die Eulersche Identität zu beachten, die den entscheidenden Zusammenhang zwischen der komplexen Exponentialfunktion und den trigonometrischen Funktionen herstellt. Da -periodisch ist, sollten diese Integrale „alle Daten“ von beinhalten. Die Aussage ist nun, dass die Kollektion der Koeffizienten mit unter Umständen ausreicht, das gesamte Signal vollständig zu rekonstruieren. Dies wird über die Konvergenz der zunächst nur formalen Fourierreihe

realisiert.[94] Ist zum Beispiel stetig differenzierbar, so wird die zugehörige Fourierreihe gleichmäßig gegen konvergieren. Allgemein bezeichnet man Kriterien, die Konvergenz(arten) von Fourierreihen festlegen, auch als Dirichlet-Bedingungen. Zum Beispiel verrät das Verhalten der Funktion einiges über die Fourierkoeffizienten: Wenn eine 1-periodische Funktion mit ihren Ableitungen bis zur -ten Ordnung stetig ist, dann streben für die Terme gegen Null.[95] Ist umgekehrt stetig und konvergiert , so ist bereits stetig differenzierbar und es gilt .[96]

Es kann die Fourierreihe zu auch ausschließlich in Termen von Sinus und Kosinus ohne komplexe Zahlen statt der Exponentialfunktion ausgedrückt werden, wobei die Wellenüberlagerung ersichtlicher wird. Allerdings ist die Nutzung komplexer Zahlen in der Elektrotechnik, auch im Kontext von Wellen, durchaus üblich.[97]

Fourierreihen können auch im Komplexen betrachtet werden. Ist auf dem offenen Streifen

holomorph und -periodisch, gilt also stets , so besitzt eine Fourier-Entwicklung

Dies ist auf ganz absolut und lokal gleichmäßig konvergent. Eine Berechnung der Koeffizienten ist für jedes durch

möglich.[98] Entscheidend für die Herleitung der Existenz einer Fourierreihe auf horizontalen Streifen ist das Abbildungsverhalten der komplexen Exponentialfunktion sowie die Existenz der Laurent-Reihe.[99] Die Entwicklung holomorpher Funktionen in Fourierreihen spielt zum Beispiel eine große Rolle in der Theorie der Modulformen.[100]

Dirichletreihen[Bearbeiten | Quelltext bearbeiten]

Dirichletreihen kommen vor allen Dingen in der Zahlentheorie zum Einsatz. Damit ist die Teildisziplin der Mathematik gemeint, die sich mit den Eigenschaften ganzer und auch rationaler Zahlen befasst. Viele Fragestellungen, etwa aus der multiplikativen Zahlentheorie, hängen dabei mit Primfaktorzerlegungen zusammen. An diesem Punkt kommen Dirichletreihen ins Spiel. Diese ahmen in manchen Fällen Primfaktorzerlegungen nach und übertragen dieses zahlentheoretische Element damit direkt in die Funktionentheorie.

Als Dirichletreihe bezeichnet man eine Entwicklung

mit

In gewisser Weise handelt es sich um eine „Potenzreihe unter Vertauschung der Rollen“: Bei Dirichletreihen wird über die Basis der Potenz summiert und nicht über den Exponenten, wie es bei in Potenzreihen noch der Fall war. Während Potenzreihen im Komplexen auf Kreisscheiben konvergieren, konvergieren Dirichletreihen im Komplexen auf rechten Halbebenen. Ist eine Dirichletreihe zudem in einem Punkt konvergent, so ist sie in jedem Punkt mit absolut konvergent. Der Bereich der absoluten Konvergenz ist wieder eine Halbebene, die von der Halbebene der Konvergenz umschlossen wird.

Die sich aus den Potenzgesetzen ergebende Rechenregel macht Dirichletreihen für die Zahlentheorie interessant. Sind nämlich die Koeffizienten ebenfalls (stark) multiplikativ, gilt also so existiert im Bereich der absoluten Konvergenz das Euler-Produkt

Kann die Funktion , ähnlich wie ein Polynom, auch über ihre Nullstellen in ein Produkt faktorisiert werden, können damit Verbindungen zwischen Primzahlen und Eigenschaften von Nullstellen spezieller Funktionen aufgebaut werden. Dies betrifft zum Beispiel die Riemannsche Zeta-Funktion

deren Nullstellen in Dualität zur Folge der Primzahlen steht.[101] Die Lage der Nullstellen in der komplexen Ebene ist Gegenstand der Riemannschen Vermutung. Eine ähnlich tiefe Vermutung, die Vermutung von Birch und Swinnerton-Dyer, befasst sich ebenfalls mit Nullstellen von Dirichletreihen, die ein Euler-Produkt besitzen. Eine sehr weitreichende Verallgemeinerung findet die Riemannsche Zeta-Funktion in den L-Funktionen.

Partialbruchzerlegungen und elliptische Funktionen[Bearbeiten | Quelltext bearbeiten]

In der komplexen Ebene können manche Funktionen durch „Interpolation ihrer Singularitäten“ generiert werden. Dies trifft auf rationale Funktionen zu, kann aber in einigen Fällen durch unendliche Reihen ausgedehnt werden. Ist eine ganze Funktion, die für Konstanten stets die Ungleichung

erfüllt, so gilt bereits[102]

Ist zusätzlich eine ungerade Funktion, ist also stets , gilt

Für führt dies, nach einem Shift im Argument, zur Partialbruchzerlegung des Kotangens:

Dieses Konzept lässt sich auf Gitter ausweiten. Seien zwei komplexe Zahlen, die über linear unabhängig sind und sei das Gitter, das von und erzeugt wird. Dann ist die Weierstraßsche -Funktion zum Gitter wie folgt definiert:[103]

Die Reihe konvergiert lokal gleichmäßig absolut in . Es handelt sich um eine doppelperiodische, also elliptische Funktion.[104] Eng verwandt zu den elliptischen Funktionen sind die sog. Eisensteinreihen.[105]

Konvergenzkriterien[Bearbeiten | Quelltext bearbeiten]

Zwar gibt es kein brauchbares, allgemeingültiges Kriterium, um zu entscheiden, ob eine Reihe konvergiert,[106] aber in manchen Spezialfällen lassen sich unter zusätzlichen Annahmen Kriterien angeben, die auf ganz unterschiedlichen mathematischen Techniken basieren.

Allgemeine Kriterien[Bearbeiten | Quelltext bearbeiten]

Nullfolgenkriterium[Bearbeiten | Quelltext bearbeiten]

Wenn die Reihe konvergiert, dann konvergiert die Folge der Summanden für gegen 0. Kontraponiert: Ist keine Nullfolge, so divergiert die entsprechende Reihe.[13]

Zudem gilt der Satz von Olivier: Ist monoton fallend und konvergent, so folgt bereits .[107]

Beispiel  

Es kann die Reihe (trotz beschränkter Partialsummen) nicht konvergieren, da nicht gegen 0 konvergiert.

Die Umkehrung ist nicht allgemeingültig (ein Gegenbeispiel ist die harmonische Reihe). Das Nullfolgenkriterium wird daher in erster Linie zum Nachweis der Divergenz einer Reihe verwendet.

Teleskopreihen[Bearbeiten | Quelltext bearbeiten]

Die Teleskopreihe konvergiert genau dann, wenn die Folge gegen eine Zahl konvergiert. Der Wert der Reihe ist dann .

Beispiel  

Es gilt , da gegen konvergiert, und .

Majorantenkriterium[Bearbeiten | Quelltext bearbeiten]

Wenn alle Glieder der Reihe nichtnegative reelle Zahlen sind, konvergiert und für alle zudem gilt, dann konvergiert auch die Reihe absolut, und es ist[108]

.
Beispiel  

Es konvergiert für alle die Reihe . In der Tat, da , folgt über

die Behauptung mit dem Majorantenkriterium.

Minorantenkriterium[Bearbeiten | Quelltext bearbeiten]

Wenn alle Glieder der Reihe nichtnegative reelle Zahlen sind, divergiert und für alle zudem mit nichtnegativen reellen Zahlen gilt, dann divergiert auch die Reihe .

Beispiel  

Es gilt für alle . Da nun

folgt die Divergenz der Reihe mit dem Minorantenkriterium.

Quotientenkriterium[Bearbeiten | Quelltext bearbeiten]

Es wird die Reihe mit für alle bis auf endlich viele betrachtet (alternativ kann im Voraus die Folge auch unter Weglassen der Nullen auf eine Teilfolge verdichtet werden, die ohne Einschränkung wieder als bezeichnet werden kann). Dann gilt:[109]

  • Falls , so ist die Reihe absolut konvergent (dabei steht für den Limes superior).
  • Falls , so ist die Reihe divergent (dabei steht für den Limes inferior).
  • In den verbleibenden Fällen kann keine Aussage getroffen werden, d. h., sowohl bedingte oder absolute Konvergenz, aber auch Divergenz sind möglich.

Die Berechnung der obigen Limites superior und inferior kann schwierig sein, weshalb in vielen Fällen lediglich eine Abschätzung gemacht wird. Ist zum Beispiel für alle bis auf endlich viele für eine feste Zahl , so gilt insbesondere , also ist die Reihe absolut konvergent.

Wurzelkriterium[Bearbeiten | Quelltext bearbeiten]

Zu einer Reihe wird die Größe betrachtet (dabei steht für den Limes superior). Dann gelten folgende Aussagen:[110]

  • Ist , so konvergiert die Reihe absolut.
  • Ist , so ist die Reihe divergent.
  • Ist , so kann keine Aussage getroffen werden, d. h., sowohl bedingte oder absolute Konvergenz, aber auch Divergenz sind möglich.

Im Falle von Potenzreihen dient das Wurzelkriterium beim Beweis der Formel von Cauchy-Hadamard für deren Konvergenzradius.[111]

Die Berechnung der obigen Limites superior und inferior kann schwierig sein, weshalb in vielen Fällen lediglich eine Abschätzung gemacht wird. Ist zum Beispiel für alle bis auf endlich viele für eine feste Zahl , so gilt insbesondere , also ist die Reihe absolut konvergent.

Kriterium von du Bois-Reymond und Dedekind[Bearbeiten | Quelltext bearbeiten]

Dieses Kriterium kann in zwei Unterkriterien unterteilt werden.

  1. Es ist die Reihe konvergent, falls absolut und wenigstens bedingt konvergiert.
  2. Es ist die Reihe konvergent, falls außer der absoluten Konvergenz von lediglich die Beschränktheit der Partialsummen von und vorausgesetzt wird.[112]

Gaußsches und Weierstraßsches Kriterium[Bearbeiten | Quelltext bearbeiten]

Kann man den Quotienten in der Form mit einer beschränkten Folge und schreiben, so ist die Reihe im Falle konvergent, und im Falle divergent.[113]

Dieses Kriterium von Gauß kann für komplexe Folgen ausgeweitet werden, wo es als Kriterium von Weierstraß benannt ist. Erfüllen die komplexen Glieder

mit und beschränkten , so konvergiert die zugehörige Reihe genau dann absolut, wenn . Ist , so sind wenigstens die Reihen und konvergent.[114]

Kriterien unter Monotoniebedingungen[Bearbeiten | Quelltext bearbeiten]

Monotoniekriterium[Bearbeiten | Quelltext bearbeiten]

Gilt für alle , so konvergiert genau dann, wenn die Folge beschränkt ist, und der Grenzwert ist .[115] Ist in diesem Szenario zusätzlich monoton fallend, impliziert die Konvergenz der Reihe auch .[116]

Es ist für beliebige positive die Reihe

konvergent.[117]

Integralkriterium[Bearbeiten | Quelltext bearbeiten]

Ist eine monoton fallende Funktion mit

für alle ,

dann konvergiert genau dann, wenn das uneigentliche Integral

existiert.[118][Anm. 3]

Beispiel  

Die Dirichletreihe konvergiert für und divergiert für , was mit dem Integralkriterium gezeigt werden kann. Als Funktion von aufgefasst, ergibt diese Reihe die Riemannsche Zeta-Funktion.

Leibniz-Kriterium[Bearbeiten | Quelltext bearbeiten]

Eine Reihe der Form

mit nichtnegativen wird alternierende Reihe genannt. Eine solche Reihe konvergiert, wenn die Folge monoton gegen 0 konvergiert.[119] Die Umkehrung ist nicht allgemeingültig.

Kriterium von Abel[Bearbeiten | Quelltext bearbeiten]

Es ist die Reihe konvergent, falls die Reihe konvergiert, und die Folge monoton und beschränkt ist.[112]

Kriterium von Dirichlet[Bearbeiten | Quelltext bearbeiten]

Es ist die Reihe konvergent, falls

also die Partialsummen der beschränkt sind, und wenn eine monoton fallende Nullfolge ist.[112] Dabei steht für das Supremum.

Cauchysches Verdichtungskriterium[Bearbeiten | Quelltext bearbeiten]

Ist eine monoton fallende Nullfolge, so konvergiert die Reihe genau dann, wenn die Reihe konvergiert.[120]

Multiplikative Funktionen[Bearbeiten | Quelltext bearbeiten]

Es ist eine multiplikative Funktion, falls für alle teilerfremden und gilt.

Es konnte Peter D. T. A. Elliott Folgendes zeigen: Es sei multiplikativ, sodass

existiert, und ferner

Dann gilt bereits, dass die Reihen

sämtlich konvergieren.[121]

Funktionentheoretische Mittel[Bearbeiten | Quelltext bearbeiten]

Sätze von Tauber und Littlewood[Bearbeiten | Quelltext bearbeiten]

Der Satz von Tauber, bewiesen von Alfred Tauber im Jahr 1897,[122] nutzt das Randverhalten einer Potenzreihe, um ein hinreichendes Kriterium für dortige Konvergenz zu geben. Ist

für alle konvergent, existiert und gilt für , so konvergiert gegen . John Edensor Littlewood konnte dieses Resultat verbessern, indem er zeigte, dass bereits die abgeschwächte Bedingung für alle mit einer Konstante für die Aussage des Satzes hinreichend ist.[123] Es konnte auch gezeigt werden, dass diese Bedingung im allgemeinen Fall nicht weiter verbessert werden kann: Zu jeder positiven, wachsenden Funktion mit existiert eine Abel-summierbare Folge mit , sodass divergiert.[124] Wird allerdings gefordert, dass die fast alle nichtnegativ sind, kann die Bedingung der Beschränktheit von gänzlich weggelassen werden.[125]

Es kann gezeigt werden, dass genau dann, wenn .[126]

Ist stets für eine reelle Zahl , dann folgt aus bereits .[127]

Kriterien von Fatou und Korevaar[Bearbeiten | Quelltext bearbeiten]

Wieder habe einen Konvergenzradius von mindestens 1. Gibt es sogar eine Konstante , sodass mit , so folgt bereits[128]

Ist um holomorph fortsetzbar und gibt es eine nicht-fallende Funktion , sodass für und für mit einer Konstanten ; gilt zudem für alle , dann konvergiert gegen und zudem gilt[129]

Eine ähnliche Aussage gilt für Dirichlet-Reihen: Ist eine Funktion, die für alle konvergiert und sich nach holomorph fortsetzen lässt; gilt ferner für ein wie oben, so gilt bereits[130]

Abel-Summierbarkeit[Bearbeiten | Quelltext bearbeiten]

Man nennt eine formale Reihe Abel-summierbar gegen , falls[131]

wobei die Reihe zur Linken für alle konvergiere. Es ist eine Abel-summierbare Reihe genau dann konvergent, wenn[132]

Satz von Fatou[Bearbeiten | Quelltext bearbeiten]

Der Satz Fatou besagt, dass, wenn die Potenzreihe

für alle konvergiert, und sich die Funktion in einer Umgebung des Randpunkts holomorph fortsetzen lässt, aus bereits folgt, dass konvergiert, und den Wert annimmt.[133]

Der Satz von Fatou kann, unter Umgehung der Bedingung der Holomorphie in , ausgeweitet werden. Dafür wird das Konzept des Hardy-Raums eines Gebietes benötigt. Erfüllt im Randpunkt die lokale -Bedingung, so existiert eine Zahl , sodass für in gegen eine (integrierbare) Funktion konvergiert (siehe auch Lp-Raum), also

Ist die Menge der Randpunkte , mit , an der singulär ist in dem Sinne, dass sie dort nicht die lokale -Bedingung erfüllt, eine Nullmenge, und gilt

dann konvergiert in jedem Punkt gegen , an dem der Differenzenquotient

die lokale -Bedingung in erfüllt.[134] Dabei steht für das Supremum.

Satz von Ingham[Bearbeiten | Quelltext bearbeiten]

Ein im Jahr 1935 gegebener Satz von Albert Ingham war Ausgangspunkt für weitere Untersuchungen von Donald Newman, der diesen mit einfachen funktionentheoretischen Mitteln beweisen konnte. Sei eine Dirichletreihe

für alle mit konvergent (d. h., sie stellt in dieser offenen Halbebene eine holomorphe Funktion dar). Lässt sich nun holomorph auf eine offene Menge fortsetzen, die vollständig enthält, und sind die beschränkt, so gilt bereits für alle [135]

Für unbeschränkte ist die obige Aussage bekanntlich falsch.

Methoden zur Grenzwertbestimmung[Bearbeiten | Quelltext bearbeiten]

Es existiert kein allgemein brauchbares Verfahren, den Grenzwert einer konvergenten Reihe explizit auszurechnen. In einigen Fällen lassen sich Grenzwerte auch nicht auf „elementare“ mathematische Konstanten zurückführen, etwa im Fall der Apéry-Konstante

Allerdings gibt es einige Techniken, die in speziellen Situationen die geschlossene Berechnung eines konvergenten Reihenausdrucks ermöglichen.

Teleskopreihen[Bearbeiten | Quelltext bearbeiten]

Hat eine Reihe die Gestalt mit einer Folge , die gegen einen Grenzwert konvergiert, so konvergiert jene ebenfalls und hat den Grenzwert .[136] Dieses Resultat lässt sich weiter verallgemeinern. Sind die Glieder der Reihe gegeben durch

mit ,

wobei gegen den Grenzwert konvergiert und , so konvergiert und der Grenzwert ist explizit gegeben durch[137]

.

Ein Anwendungsbeispiel dieser Regel ist[138]

Abelscher Grenzwertsatz[Bearbeiten | Quelltext bearbeiten]

Es sei eine konvergente Reihe. Eine Möglichkeit, ihren Grenzwert zu bestimmen, geht über die von den erzeugte Funktion. Niels Henrik Abel konnte beweisen, dass sich die Funktion

stetig nach fortsetzen lässt. Ferner gilt

In einem rechtwinkligen, gleich­schenkligen Dreieck mit °-Winkeln (entspricht im Bogenmaß) berechnet sich der Tangens von durch das Verhältnis beider (gleichlanger) Katheten, ist also gerade . Entsprechend nimmt seine Umkehrfunktion, der Arkustangens, an der Stelle den Wert an.

Mit diesem Ansatz können manche klassischen Reihengrenzwerte berechnet werden.[139] Beispielsweise gilt für alle mit gilt die Reihendarstellung

Mit dem Leibniz-Kriterium und der Abel-Summierbarkeit folgt damit die Leibniz-Reihe:[140]

Ähnlich verhält es sich mit der Taylorreihe des natürlichen Logarithmus:

Damit folgt, dass die alternierende harmonische Reihe den Grenzwert besitzt:[141]

Beide Reihen zeigen zwar ein klares „Bildungsgesetz“, sind jedoch für numerische Berechnungen unbrauchbar.[142]

Differential- und Integralrechnung[Bearbeiten | Quelltext bearbeiten]

Ansätze über Differential- und Integralrechnung greifen primär auf Eigenschaften von Potenzreihen zurück. In manchen Fällen kann der Grenzwert einer Reihe ermittelt werden, indem man die allgemeinere Potenzreihe für Werte studiert. Im einfachsten Fall gilt:

  • Die Reihe hat Konvergenzradius ,
  • und es lässt sich durch bekannte Funktionen geschlossen ausdrücken.

Dann kann mit

direkt ein geschlossener Grenzwert hingeschrieben werden, und Konvergenz folgt ebenso automatisch. Ist der Konvergenzradius jedoch genau , muss im Rahmen des Abelschen Grenzwertsatzes zunächst Konvergenz nachgewiesen werden (siehe oben).

Dieser Ansatz kann schnell auf Reihen des Typs

mit verallgemeinert werden. In der obigen Situation mit Konvergenzradius sind diese sämtlich absolut konvergent, und Grenzwerte können geschlossen über die höheren Ableitungen der Funktion an der Stelle ausgedrückt werden. Zum Beispiel gilt mit obiger Notation

und ganz allgemein

(für ),

wobei die Stirling-Zahlen zweiter Art sind.[143] Ein einfaches Beispiel betrifft die Reihe

Es gilt mit der geometrischen Reihe für alle (weshalb die betrachtete Reihe definitiv absolut konvergiert), und mit der Grenzwert .

Mitunter noch einfacher gestaltet sich dieser Ansatz beim Übergang zu Fourierreihen via den Variablenwechsel . Man betrachtet dann

im Punkt und beim Ableiten dieser Reihe sind keine Stirling-Zahlen mehr vonnöten (allerdings wird gleichzeitig wegen Verkettung das Aufstellen geschlossener Ableitungsterme meist schwieriger). Im Rahmen der charakteristischen Funktion ist dieses Vorgehen in der Wahrscheinlichkeitstheorie bei der Berechnung von Momenten diskreter Zufallsvariablen nützlich, siehe auch momenterzeugende Funktion.

In einigen Fällen können Reihen direkt auf gewisse Integrale zurückgeführt werden, wobei Letztere dann mit Methoden der Analysis, zum Beispiel durch Auswertung mit Angabe einer Stammfunktion, gelegentlich geschlossen berechnet werden können. Die Umwandlung von Integral in Reihe ergibt sich dabei im Falle von Funktionenreihen oft durch gliedweise Integration. Ein Beispiel ist die Leibniz-Reihe:[144]

David Bailey, Peter Borwein und Simon Plouffe benutzten die Integralformel

beim Beweis der Bailey-Borwein-Plouffe-Formel für die Kreiszahl .[145] Ein anderes Beispiel betrifft eine Lösung des Basler Problems über den Ansatz